Modélisation mathématique et approximation numérique d'un problème d'écoulement dans une décharge de déchets ménagers

Z. Belhachmi¹ Z. Mghazli² <u>S. Ouchtout</u>³

^{1,3}IRIMAS - UNIVERSITE DE HAUTE ALSACE, MULHOUSE

 $^{2,3}\mathsf{LIRNE}\text{-}\mathsf{EIM}$ - UNIVERSITE IBN TOFAIL, KENITRA

26 Janvier 2021

Introduction

e Modèle

Analyse et approximation numérique

- Aésultats numériques
- S Conclusion / Perspective

Introduction

La digestion anaérobie

- un processus biologique naturel de décomposition de la matière organique par des micro-organismes (bactéries)
- des conditions anaérobies
- une succession de réactions complexes à la fois en parallèle et en série.
- la matière organique se transforme en biogaz

Introduction

Objectif

 \Longrightarrow La teneur en eau est un facteur important pour la production du biogaz

 \implies L'utilisation des équations d'écoulement de lixiviat

 \Longrightarrow Construire des prévision et prendre de bonne décision pour améliorer la situation de production du biogaz

Système de digestion anaérobie en deux étapes Système d'écoulement monophasique du lixiviat

Modèle de digestion anaérobie

Figure – 1 – Schéma utilisé pour modéliser la dégradation anaérobie de la matière organique

Système de digestion anaérobie en deux étapes Système d'écoulement monophasique du lixiviat

$$\begin{cases} \frac{dX}{dt} = -K_h X + \alpha K_d B \\ \frac{dS}{dt} = f_1 K_h X - \frac{1}{Y} \mu(S) B \\ \frac{dB}{dt} = (\mu(S) - K_d) B \\ \left(\frac{d[CO_2]}{dt} = (1 - f_1) K_h X + (1 - f_2) \frac{1 - Y}{Y} \mu(S) B \\ \frac{d[CH_4]}{dt} = f_2 \frac{1 - Y}{Y} \mu(S) B \end{cases}$$
(1b)

Système de digestion anaérobie en deux étapes Système d'écoulement monophasique du lixiviat

$$\begin{cases} \frac{dX}{dt} = -K_h X + \alpha K_d B\\ \frac{dS}{dt} = f_1 K_h X - \frac{1}{Y} \mu(S) B\\ \frac{dB}{dt} = (\mu(S) - K_d) B\\ \begin{cases} \frac{d[CO_2]}{dt} = (1 - f_1) K_h X + (1 - f_2) \frac{1 - Y}{Y} \mu(S) B\\ \frac{d[CH_4]}{dt} = f_2 \frac{1 - Y}{Y} \mu(S) B \end{cases}$$
(1b)

Système de digestion anaérobie en deux étapes Système d'écoulement monophasique du lixiviat

$$\begin{cases} \frac{dX}{dt} = -K_h X + \alpha K_d B\\ \frac{dS}{dt} = f_1 K_h X - \frac{1}{Y} \mu(S) B\\ \frac{dB}{dt} = (\mu(S) - K_d) B\\ \begin{cases} \frac{d[CO_2]}{dt} = (1 - f_1) K_h X + (1 - f_2) \frac{1 - Y}{Y} \mu(S) B\\ \frac{d[CH_4]}{dt} = f_2 \frac{1 - Y}{Y} \mu(S) B \end{cases}$$
(1b)

Système de digestion anaérobie en deux étapes Système d'écoulement monophasique du lixiviat

Modèle de digestion anaérobie

$$\begin{cases} \frac{dX}{dt} = -K_h X + \alpha K_d B = F_1(U) \\ \frac{dS}{dt} = f_1 K_h X - \frac{1}{Y} \mu(S) B = F_2(U) \\ \frac{dB}{dt} = (\mu(S) - K_d) B = F_3(U) \\ \frac{d[CO_2]}{dt} = (1 - f_1) K_h X + (1 - f_2) \frac{1 - Y}{Y} \mu(S) B = F_4(U) \\ \frac{d[CH_4]}{dt} = f_2 \frac{1 - Y}{Y} \mu(S) B = F_5(U) \end{cases}$$
(2b)

 $U = (u_1, u_2, u_3)^t = (X, B, S)^t, \qquad G = (u_4, u_5)^t = ([CO_2], [CH_4])^t$ F¹(U) = (F₁(U), F₂(U), F₃(U))^T, F²(U) = (F₄(U), F₅(U))^T.

Système de digestion anaérobie en deux étapes Système d'écoulement monophasique du lixiviat

Taux de croissance spécifique

 $\mu(S)$ est le taux de croissance spécifique :

La loi de Monod

$$\mu(S) = \frac{\mu_m S}{K_S + S}$$

{*Rouez*, *M*.(2008)[5]}

• La loi de Haldane $\mu(S) = rac{\mu_m S}{K_S + S + rac{S^2}{K_l}}.$

Figure – 2 – La loi de Monod dans (a) et la loi de Haldane dans (b)

Système de digestion anaérobie en deux étapes Système d'écoulement monophasique du lixiviat

Taux de croissance spécifique

 $\mu(S)$ est le taux de croissance spécifique :

La loi de Monod

$$\mu(S) = \frac{\mu_m S}{K_S + S} \qquad \{Rouez, M.(2008)[5]\}$$

• La loi de Haldane

$$\mu(S) = \frac{\mu_m S}{K_S + S + \frac{S^2}{K_I}}.$$

Figure – 2 – La loi de Monod dans (a) et la loi de Haldane dans (b) 8/42

Système de digestion anaérobie en deux étapes Système d'écoulement monophasique du lixiviat

Comportement asymptotique

Ouchtout S., Mghazli, Z., Harmand, J., Rapaport, A., Belhachmi, Z. (2020) [4]

Considérons $\mathcal E$ l'ensemble des valeurs de S défini par

$$\mathcal{E} := \{ s \in \mathbb{R}_+ ; \mu(s) \leq K_d \}.$$

- Cas de la loi de Monod : il n'y a qu'un seul bassin $\overline{\mathcal{B}} = \{0\} \times I_M \times \{0\}$ conduisant à des équilibres avec S^* dans $I_M = [0, \lambda] = \mathcal{E}$.
- Cas de la loi de Haldane : il y a deux bassins $\mathcal{B}^- = \{0\} \times I_{H1} \times \{0\}, \mathcal{B}^+ = \{0\} \times I_{H2} \times \{0\}$ conduisant à des équilibres avec S^* dans $I_{H1} = [0, \lambda^-]$ ou dans $I_{H2} = [\lambda^+, +\infty)$ $(I_{H1} \cup I_{H2} = \mathcal{E}).$

Système de digestion anaérobie en deux étapes Système d'écoulement monophasique du lixiviat

Comportement asymptotique

Proposition

Pour tout vecteur non négatif (X_0, S_0, B_0) , les solutions de (2a) - (2b) vérifient

$$\lim_{t \to +\infty} [CO_2](t) = [CO_2](0) + a(X_0 + \alpha B_0) + b(S_0 - S^*)$$
$$\lim_{t \to +\infty} [CH_4](t) = [CH_4](0) + c(X_0 + \alpha B_0) + d(S_0 - S^*)$$

Système de digestion anaérobie en deux étapes Système d'écoulement monophasique du lixiviat

Comportement asymptotique

Figure – Valeur maximale de $[CH_4]$ en fonction de X_0 .

Système de digestion anaérobie en deux étapes Système d'écoulement monophasique du lixiviat

$$\begin{cases} \frac{dX}{dt} = -K_h X + \alpha K_d B + \operatorname{div}(D_X \nabla X) \\ \frac{dS}{dt} = f_1 K_h X - \frac{1}{Y} \mu(S) B + \operatorname{div}(D_S \nabla S) \\ \frac{dB}{dt} = (\mu(S) - K_d) B + \operatorname{div}(D_B \nabla B) \\ \begin{cases} \frac{d[CO_2]}{dt} = (1 - f_1) K_h X + (1 - f_2) \frac{1 - Y}{Y} \mu(S) B + \operatorname{div}(D_{[CO_2]} \nabla [CO_2]) \\ \frac{d[CH_4]}{dt} = f_2 \frac{1 - Y}{Y} \mu(S) B + \operatorname{div}(D_{[CH_4]} \nabla [CH_4]) \end{cases}$$

Système de digestion anaérobie en deux étapes Système d'écoulement monophasique du lixiviat

$$\begin{cases} \frac{dX}{dt} = -K_h X + \alpha K_d B + \operatorname{div}(D_X \nabla X) \\ \frac{dS}{dt} = f_1 K_h X - \frac{1}{Y} \mu(S) B + \operatorname{div}(D_S \nabla S) \\ \frac{dB}{dt} = (\mu(S) - K_d) B + \operatorname{div}(D_B \nabla B) \\ \begin{cases} \frac{d[CO_2]}{dt} = (1 - f_1) K_h X + (1 - f_2) \frac{1 - Y}{Y} \mu(S) B \\ \frac{d[CH_4]}{dt} = f_2 \frac{1 - Y}{Y} \mu(S) B \end{cases}$$

Système de Réaction-Diffusion (NL) :

(S1)
$$\begin{cases} \frac{\partial U}{\partial t} - \operatorname{div}\left(\overline{D}\nabla U\right) &= F^{1}(U) & \operatorname{dans} \Omega \times]0, T[\\ \\ \frac{dG}{dt} &= F^{2}(U) & \operatorname{dans} \Omega \times]0, T[\\ \\ \\ \frac{\partial U}{\partial n} &= 0 & \operatorname{sur} \partial \Omega \times]0, T[\\ \\ U(0, \cdot) &= U^{0}(\cdot) \text{ et } G(0, \cdot) = G^{0}(\cdot) & \operatorname{dans} \Omega. \end{cases}$$

Remarque

$$\frac{dG}{dt} = F^{2}(U) = \begin{bmatrix} (1-f_{1})K_{h}u_{1} + (1-f_{2})\frac{1-Y}{Y}\left(\frac{du_{2}}{dt} + K_{d}u_{2}\right) \\ f_{2}\frac{1-Y}{Y}\left(\frac{du_{2}}{dt} + K_{d}u_{2}\right) \end{bmatrix}.$$

Le système d'écoulement du lixiviat :

$$S2) \begin{cases} \partial_t \theta(p) + \operatorname{div} \mathbf{u} = f & \operatorname{dans} \quad \Omega \times]0, T[\\ k(p)\mathbf{u} = -\nabla p + e_z & \operatorname{dans} \quad \Omega \times]0, T[\\ p = p_D & \operatorname{sur} \quad \Gamma_D \times]0, T[\\ \mathbf{u}.\mathbf{n} = 0 & \operatorname{sur} \quad \Gamma_N \times]0, T[\\ p(x,0) = p_0(x) & \operatorname{dans} \quad \Omega. \end{cases}$$

 θ(p) et k(p) sont des fonctions empiriques (Brooks-Corey (1964), Campbel (1974) et Van Genuchten (1980))

Système de digestion anaérobie en deux étapes Système d'écoulement monophasique du lixiviat

Terme source

Figure – 3 – La fonction empirique $\tilde{g}(\omega)$ "Aran, C. (2001)[1]"

Terme source

Système de digestion anaérobie en deux étapes Système d'écoulement monophasique du lixiviat

Le terme source de l'équation de continuité de lixiviat :

$$\alpha_{I} = -\gamma \alpha_{b} = -\gamma \tilde{g}(\omega) C_{Tb} \lambda_{cin},$$

 λ_{cin} est le taux de génération du biogaz

$$\lambda_{cin} = rac{dC_{biogaz}}{dt} = rac{d([CH_4] + [CO_2])}{dt},$$

Système de digestion anaérobie en deux étapes Système d'écoulement monophasique du lixiviat

Modèle final

$$(S1) \begin{cases} \frac{\partial U}{\partial t} - \operatorname{div}\left(\overline{\overline{D}} \cdot \nabla U\right) &= F^{1}(U), \quad \operatorname{dans} \Omega \times]0, T[, \\ \frac{dG}{dt} &= F^{2}(U), \quad \operatorname{dans} \Omega \times]0, T[, \\ \frac{\partial U}{\partial \mathbf{n}} &= 0 \quad \operatorname{sur} \partial \Omega \times]0, T[, \\ U(0, \cdot) &= U^{0}(\cdot), \quad \operatorname{dans} \Omega \\ G(0, \cdot) &= G^{0}(\cdot), \quad \operatorname{dans} \Omega, \end{cases}$$

et

$$(S2) \begin{cases} c(p)\frac{\partial p}{\partial t} + \operatorname{div} \mathbf{u} = f, & \operatorname{dans} \quad \Omega \times]0, 7 \\ k(p)\mathbf{u} = -\nabla p + e_z, & \operatorname{dans} \quad \Omega \times]0, 7 \\ p = p_D, & \operatorname{sur} \quad \Gamma_D \times]0, 7 \\ \mathbf{u}.\mathbf{n} = 0, & \operatorname{sur} \quad \Gamma_D \times]0, 7 \\ \mathbf{u}.\mathbf{n} = 0, & \operatorname{sur} \quad \Gamma_N \times]0, 7 \\ p(x, 0) = p_0(x), & \operatorname{dans} \quad \Omega. \end{cases}$$

Système de digestion anaérobie en deux étapes Système d'écoulement monophasique du lixiviat

Modèle final

(S1)
$$\begin{cases} \frac{\partial U}{\partial t} - \operatorname{div}\left(\overline{\overline{D}} \cdot \nabla U\right) &= F^{1}(U), \quad \operatorname{dans} \Omega \times]0, T[, \\ \frac{dG}{dt} &= F^{2}(U), \quad \operatorname{dans} \Omega \times]0, T[, \\ \frac{\partial U}{\partial \mathbf{n}} &= 0 \quad \operatorname{sur} \partial \Omega \times]0, T[, \\ U(0, \cdot) &= U^{0}(\cdot), \quad \operatorname{dans} \Omega \\ G(0, \cdot) &= G^{0}(\cdot), \quad \operatorname{dans} \Omega, \end{cases}$$

et

(S2)
$$\begin{cases} c(p)\frac{\partial p}{\partial t} + \operatorname{div} \mathbf{u} = f, & \operatorname{dans} \quad \Omega \times]0, T[p] \\ k(p)\mathbf{u} = -\nabla p + e_z, & \operatorname{dans} \quad \Omega \times]0, T[p] \\ p = p_D, & \operatorname{sur} \quad \Gamma_D \times]0, T[p] \\ \mathbf{u} \cdot \mathbf{n} = 0, & \operatorname{sur} \quad \Gamma_N \times]0, T[p] \\ p(x, 0) = p_0(x), & \operatorname{dans} \quad \Omega. \end{cases}$$

Analyse de problème approximation numérique

Proposition 1

Pour tout $U^0 \in L^{\infty}(\Omega, \mathbb{R}^3_+)$, le système (S1) a une solution faible unique, et non négative, $U = (u_1, u_2, u_3)^T$ dans le sens suivant : $\forall T > 0$

 $\begin{array}{l} \forall i \in \{1,2,3\}, \quad u_i \in C\left([0,T]; L^2(\Omega)\right) \cap L^\infty(Q_T) \cap L^2\left(0,T; H^1(\Omega)\right); \\ \forall \psi \in C^\infty(Q_T) \text{ tel que } \psi(T) = 0 \end{array}$

$$-\int_{\Omega} u_i^0 \psi(0) \, dx - \int_{Q_T} u_i \frac{\partial \psi}{\partial t} \, dx \, dt + \int_{Q_T} D_i \nabla u_i \cdot \nabla \psi \, dx \, dt = \int_{Q_T} F_i(U(t,x)) \cdot \psi \, dx \, dt.$$

De plus, pour tout T > 0, il existe C > 0 tel que

$$\|\mathbf{U}\|_{L^{\infty}(Q_{T})^{3}}+\|\mathbf{U}\|_{L^{2}(0,T;H^{1}(\Omega)^{3})}+\left\|\frac{\partial \mathbf{U}}{\partial t}\right\|_{L^{2}(0,T;H^{-1}(\Omega)^{3})}\leq C.$$

Analyse de problème approximation numérique

Analyse de problème

Proposition 2

Pour tout $p^0 \in L^2(\Omega)$ et $p_D \in H^{\frac{1}{2}}(\Gamma_D)$, il existe une unique solution faible $p \in p_D + L^2(0, T; H^1_{\Gamma_D}(\Omega))$ dans le sens suivant : $p(x, 0) = p^0$ et pour tout $\varphi \in L^2(0, T; H^1_{\Gamma_D}(\Omega))$

$$\int_{0}^{T} \int_{\Omega} \frac{\partial \theta(p)}{\partial t} \varphi dx dt + \int_{0}^{T} \int_{\Omega} \frac{k_{i}k_{r}(p)}{\mu_{\ell}} \rho g(\nabla p - e_{z}) \cdot \nabla \varphi dx dt = \int_{0}^{T} \int_{\Omega} \varphi dx dt.$$

Analyse de problème approximation numérique

Discrétisation complète du système (S1)

Trouver $U_h^1 \in Z_h$ tel que

$$\int_{\Omega} \left[\tau_0^{-1} \mathsf{I}_3 - J_{\mathsf{F}^1} \left(\mathsf{U}^0 \right) \right] \mathsf{U}_h^1 \cdot \mathsf{v} dx + \int_{\Omega} \overline{\overline{D}} \nabla \mathsf{U}_h^1 \cdot \nabla \mathsf{v} dx = \\ \int_{\Omega} \left[\tau_0^{-1} \mathsf{U}^0 + \mathsf{F}^1 \left(\mathsf{U}^0 \right) - J_{\mathsf{F}^1} \left(\mathsf{U}^0 \right) \mathsf{U}^0 \right] \cdot \mathsf{v} dx \quad \forall \mathsf{v} \in Z_h,$$

Analyse de problème approximation numérique

Discrétisation complète du système (S1)

Puis, en utilisant la Remarque 14, on cherche $G_h^{m+1} = (u_{4h}^{m+1}, u_{5h}^{m+1})^T$, pour $0 \le m \le n$, tel que

$$\frac{u_{4h}^{m+1} - u_{4h}^m}{\tau_m} = (1 - f_1) K_h u_{1h}^{n+1} + (1 - f_2) \frac{1 - Y}{Y} \left(\frac{u_{2h}^{m+1} - u_{2h}^m}{\tau_m} + K_d u_{2h}^{m+1} \right) + \frac{u_{5h}^{m+1} - u_{5h}^m}{\tau_m} = f_2 \frac{1 - Y}{Y} \left(\frac{u_{2h}^{m+1} - u_{2h}^m}{\tau_m} + K_d u_{2h}^{m+1} \right) + \frac{u_{5h}^{m+1} - u_{5h}^m}{\tau_m} = f_2 \frac{1 - Y}{Y} \left(\frac{u_{2h}^{m+1} - u_{2h}^m}{\tau_m} + K_d u_{2h}^{m+1} \right) + \frac{u_{5h}^m - u_{5h}^m}{\tau_m} = f_2 \frac{1 - Y}{Y} \left(\frac{u_{2h}^m - u_{2h}^m}{\tau_m} + K_d u_{2h}^m \right) + \frac{u_{5h}^m - u_{5h}^m}{\tau_m} = f_2 \frac{1 - Y}{Y} \left(\frac{u_{2h}^m - u_{2h}^m}{\tau_m} + K_d u_{2h}^m \right) + \frac{u_{5h}^m - u_{5h}^m}{\tau_m} = f_2 \frac{1 - Y}{Y} \left(\frac{u_{2h}^m - u_{2h}^m}{\tau_m} + K_d u_{2h}^m \right) + \frac{u_{5h}^m - u_{5h}^m}{\tau_m} = f_2 \frac{1 - Y}{Y} \left(\frac{u_{2h}^m - u_{2h}^m}{\tau_m} + K_d u_{2h}^m \right) + \frac{u_{5h}^m - u_{5h}^m}{\tau_m} = f_2 \frac{1 - Y}{Y} \left(\frac{u_{2h}^m - u_{2h}^m}{\tau_m} + K_d u_{2h}^m \right) + \frac{u_{5h}^m - u_{5h}^m}{\tau_m} = f_2 \frac{1 - Y}{Y} \left(\frac{u_{2h}^m - u_{2h}^m}{\tau_m} + K_d u_{2h}^m \right) + \frac{u_{5h}^m - u_{5h}^m}{\tau_m} = f_2 \frac{1 - Y}{Y} \left(\frac{u_{2h}^m - u_{2h}^m}{\tau_m} + K_d u_{2h}^m \right) + \frac{u_{5h}^m - u_{5h}^m}{\tau_m} = f_2 \frac{1 - Y}{Y} \left(\frac{u_{2h}^m - u_{2h}^m}{\tau_m} + K_d u_{2h}^m \right) + \frac{u_{5h}^m - u_{5h}^m}{\tau_m} = f_2 \frac{1 - Y}{Y} \left(\frac{u_{2h}^m - u_{2h}^m}{\tau_m} + K_d u_{2h}^m \right) + \frac{u_{5h}^m - u_{5h}^m}{\tau_m} +$$

Analyse de problème approximation numérique

Semi-discrétisation et FV du système (S2)

$$(S2_c) \begin{cases} \text{Trouver } (\mathbf{u}^{n+1}, p^{n+1}) \in \mathbf{V} \times W \text{ tel que} \\ \\ a (\mathbf{u}^{n+1}, \psi) + b (\psi, p^{n+1}) = g_1(\psi), & \forall \psi \in \mathbf{V}, \\ \\ b (\mathbf{u}^{n+1}, \varphi) - d (p^{n+1}, \varphi) = g_2(\varphi), & \forall \varphi \in W, \end{cases}$$

$$\begin{array}{lll} H(\operatorname{div},\Omega) &=& \big\{ \mathbf{v} \in (L^2(\Omega))^2, & \operatorname{div} \mathbf{v} \in L^2(\Omega) \big\}, \\ \mathbf{V} &=& H_{0,N}(\Omega) = \{ \mathbf{v} \in H(\operatorname{div},\Omega), & \mathbf{v}.\mathbf{n} = 0 \ \operatorname{sur} \, \Gamma_N \}, \\ W &=& L^2(\Omega), \end{array}$$

Analyse de problème approximation numérique

Semi-discrétisation et FV du système (S2)

où $a: \mathbf{V} \times \mathbf{V} \longrightarrow \mathbb{R}, b: \mathbf{V} \times W \longrightarrow \mathbb{R}$ et $d: W \times W \longrightarrow \mathbb{R}$ sont des formes bilinéaires définies par

$$\begin{aligned} a\left(\mathbf{u},\psi\right) &= \int_{\Omega} k(p^{n})\mathbf{u} \cdot \psi dx \quad , \quad (\mathbf{u},\psi) \in \mathbf{V} \times \mathbf{V} \\ b\left(\mathbf{u},\varphi\right) &= -\int_{\Omega} \operatorname{div} \mathbf{u}\varphi \quad , \quad (\mathbf{u},\varphi) \in \mathbf{V} \times W \\ d\left(p,\varphi\right) &= \int_{\Omega} \frac{c(p^{n})}{\tau_{n}} p\varphi dx \quad , \quad (p,\varphi) \in W \times W \end{aligned}$$

Analyse de problème approximation numérique

Semi-discrétisation et FV du système (S2)

$$g_1: \mathbf{V} \longrightarrow \mathbb{R}$$
 et $g_2: \mathcal{W} \longrightarrow \mathbb{R}$ sont des formes linéaires définies par

$$g_{1}(\psi) = -\int_{\Gamma_{D}} p_{D}\psi \cdot \mathbf{n}ds + \int_{\Omega} e_{z} \cdot \psi dx \quad , \quad \psi \in \mathbf{V}$$
$$g_{2}(\varphi) = -\int_{\Omega} \frac{c(p^{n})}{\tau_{n}} p^{n}\varphi dx - \int_{\Omega} f^{n+1}\varphi dx \quad , \quad \varphi \in W.$$

Analyse de problème approximation numérique

Proposition 3

Pour tout $p_D \in H^{1/2}(\Gamma_D)$ et $f \in L^2(\Omega)$, le système (S2_c) admet une solution unique et on a les estimations

$$\begin{aligned} \|\boldsymbol{u}^{n}\|_{\boldsymbol{V}} &\leq C_{1}\|g_{1}\|_{\boldsymbol{V}'} + C_{2}\|g_{2}^{n}\|_{W'}, \\ \|p^{n}\|_{W} &\leq C_{2}\|g_{1}\|_{\boldsymbol{V}'} + C_{3}\|g_{2}^{n}\|_{W'}, \end{aligned}$$

avec

$$C_{1} = \frac{(1 + C_{\Omega}^{2})^{-1} + 4\tau_{n-1}^{-1}C(p^{n-1})C_{k}}{c_{k}(1 + C_{\Omega}^{2})^{-1}} , \quad C_{2} = \frac{2C_{k}^{1/2}}{c_{k}^{1/2}(1 + C_{\Omega}^{2})^{-1/2}},$$
$$C_{3} = \frac{4C_{k}}{\tau_{n-1}^{-1}C(p^{n-1}) + 2(1 + C_{\Omega}^{2})^{-1}} ,$$

où C_{Ω} est la constante de Poincaré.

Analyse de problème approximation numérique

Espace discrets

L'espace global Raviart-Thomas le plus bas degré :

$$RT_0(\mathcal{T}_h) := \{ \mathbf{v}_h \in H(\operatorname{div}, \Omega) : \mathbf{v}_h |_{\mathcal{K}} \in RT_0(\mathcal{K}), \forall \mathcal{K} \in \mathcal{T}_h \}.$$

Nous introduisons les espaces discrets suivants : "pour (S2)"

$$\mathbf{V}_h = ig\{ \mathbf{v}_h \in RT_0(\mathcal{T}_h) \mid \mathbf{v}_h \cdot \mathbf{n}_{|\Gamma_N} = 0 ig\}.$$

et

$$W_h := \left\{ q_h \in L^2(\Omega) : \quad q_h|_{\mathcal{K}} \in P_0(\mathcal{K}), \ \forall \mathcal{K} \in \mathcal{T}_h
ight\}.$$

Analyse de problème approximation numérique

Discrétisation complète du système (S2)

L'approximation par la méthode des éléments finis mixtes est la suivante :

$$(S2_{h}) \begin{cases} \text{Trouver } (\mathbf{u}_{h}^{n+1}, p_{h}^{n+1}) \in \mathbf{V}_{h} \times W_{h} \text{ tel que} \\ a (\mathbf{u}_{h}^{n+1}, \psi_{h}) + b (\psi_{h}, p_{h}^{n+1}) = g_{1}(\psi_{h}) \ \forall \psi_{h} \in \mathbf{V}_{h}, \\ b (\mathbf{u}_{h}^{n+1}, \varphi_{h}) - d (p_{h}^{n+1}, \varphi_{h}) = g_{2}(\varphi_{h}) \ \forall \varphi_{h} \in W_{h}. \end{cases}$$

Analyse de problème approximation numérique

Discrétisation complète du système (S2)

Proposition 3

Le problème $(S2_h)$ admet une solution unique.

Proposition 4

Pour tout $\mathbf{u} \in (H^2(\Omega))^2$ et $p \in H^1(\Omega)$, il existe une constante C > 0 indépendante de h qui satisfait l'estimation suivante

$$\| \boldsymbol{u} - \boldsymbol{u}_h \|_{\boldsymbol{V}} + \| \boldsymbol{p} - \boldsymbol{p}_h \|_{W} \le Ch(|\boldsymbol{u}|_{1,\Omega} + |div \boldsymbol{u}|_{1,\Omega} + |\boldsymbol{p}|_{1,\Omega})$$

Résultats numériques

Résultats numériques

$$\begin{split} \Omega = &]0, L[\times]0, L[\times]0, L[, L = 10. \ \partial\Omega = \Gamma_D \cup \Gamma_N \text{ et} \\ & \Gamma_D = \{(x, y) \in]0, L[\times]0, L[\text{ and } z = 0\}. \ (z \text{ est } l'\text{axe vertical dirigé vers le} \\ & \text{bas}) \end{split}$$

Figure – 4 – Le maillage (600 tétraèdres, 1331 sommets et 1200 arêtes (faces)).

Résultats numériques

Table – 1 – Les paramètres et les conditions initiales et aux limites du problème

[$K_H(d^{-1})$		$\mu_m(d^{-1})$		f_1	f_1 f_2		K	$K_{S}(mgC/L)$		K _d ($K_d(d^{-1})$		Y	
[0.176			0.3			0.76	160		0.	0.04		0.05		
$M_b(g/mol)$			N	$M_{H_2O}(g/mc)$			A _m C		$C_{Tb}(m^3/Kg)$		K _I (r	K _I (mgC/L		α	
	30			18.01			0.8		0.178		10		0	.9	
θ_r	$\theta_r \qquad \theta_s$		k	$k_i(m.s^{-1})$		$\rho(Kg.m)$		-3)	ŀ	o _a (m)	(<i>m</i>) <i>b</i>		$\mu_l(Kg.m^{-1}.s$		
0.	0.27 0.97		10 ⁻⁴			991.5			-0).0323	2.5	$4.61027 \cdot 10^{-4}$		10^{-4}	
	$X_0 (mgC/L)$			<i>S</i> ₀ (mgC/L)			[<i>CO</i> ₂] ₀ (mg			gC/L)	[<i>CH</i> ₄] ₀ (mgC/L)				
	1751			0			0					0			
				$p_0(m)$ in Ω		$p_D(m)$ on [D	$\mathbf{u} \cdot \mathbf{n}$ on Γ_N					
			-	-0.7			-0.1020			0					

Résultats numériques

$$B_0(x, y, z) = \begin{cases} 1 & \text{dans} \quad \{0 \le x \le L/2 \text{ , } 0 \le y \le L \text{ et } 0 \le z \le L/2\}, \\ 2 & \text{dans} \quad \{L/2 \le x \le L \text{ , } 0 \le y \le L \text{ et } 0 \le z \le L/2\}, \\ 3 & \text{dans} \quad \{0 \le x \le L \text{ , } 0 < y < L \text{ et } L/2 \le z < L\}. \end{cases}$$

$$\overline{\bar{D}}_5 = \{D_X = 10^{-9}, D_S = 10^{-5}, D_B = 10^{-4}\}$$
 et
 $\overline{\bar{D}}_5^c = \{D_X = 10^{-9}, D_S = 10^{-5}, D_B = 10^{-4}, D_{CO_2} = 10^{-3}, D_{CH_4} = 10^{-3}\}.$

Résultats numériques

Figure – 5 – La production de méthane (en mgC/L) après 2 jours en utilisant la loi de Haldane avec \overline{D}_5 et \overline{D}_5^c en 2D.

- presque la même chose
- la valeur moyenne n'augmente pas
- avec \overline{D}_5 (7,605 s en 2D et 71 s en 3D) \overline{D}_5 et avec \overline{D}_5^c (8,7 s en 2D, et 103 s en 3D)

Numerical results

Figure – Production de biogaz (en mgC / L) en fonction de X_0 (en mgC / L) en utilisant la loi de Haldane avec $B_0 = 2$, $K_I = 10$ et la diffusion $\overline{\overline{D}}_5$

Résultats numériques

 $\mathsf{Figure}-\mathsf{6}-\mathsf{Evolution}$ de la production du biogaz (mgC/L) avec la loi de Haldane

Résultats numériques

Figure – 7 – La vitesse du lixiviat (m/d) avec la loi de Haldane

Résultats numériques

Figure – 8 – La teneur en eau θ en utilisant la loi de Haldane

Conclusion

La résolution des équations d'écoulement du lixiviat est l'un des chemins importants pour améliorer la situation

- ⇒ Savoir dans quel endroit et quand la production du biogaz est meilleure ou non.
- \implies Une bonne prise de décision

Perspective

 A partir d'un instant critique où le biogaz commence à décroitre : mettre une condition de Neumann non homogènne

 \implies pour une production optimale du biogaz.

- L'introduction de la teneur en eau dans les équations qui décrivent l'hydrolyse et la méthanogènese
- Modèle d'ecoulement multiphasque fortement couplé.

Aran, C. (2001), Modélisation des Ecoulements de Fluides et des Transferts de Chaleur au Sein des Déchets Ménagers. Application à la Réinjection de Lixiviat dans un Centre de Stockage. (Doctoral dissertation)

Belhachmi, Z., Mghazli, Z., Ouchtout, S. (2021), *Mathematical modelling* and numerical approximation of a leachate flow in the anaerobic biodegradation of waste in a landfill. Journal of Mathematics and Computers in Simulation, Volume 185, pp 174-193.

Bothe, D., Fischer, A., Pierre, M., Rolland, G. (2017), *Global* wellposedness for a class of reaction-advection-anisotropic-diffusion systems. Journal of Evolution Equations, 17(1), 101-130.

Ouchtout S., Mghazli, Z., Harmand, J., Rapaport, A., Belhachmi, Z. (2020), *Analysis of an anaerobic digestion model in landfill with mortality term*, Communications on Pure and Applied Mathematics, Volume 19, Number 4, pp 2333-2346.

Rouez, M. (2008), *Dégradation anaérobie de déchets solides : Caractérisation, facteurs d'influence et modélisations*. Laboratoire de Génie Civil et d'Ingénierie Environnementale. Lyon, Institut National des Sciences Appliquées Docteur, 259.

Merci de votre attention