Use of a hybrid Biofilm- Suspended biomass Membrane Bioreactor for the treatment of wastewaters

Juan M. Garrido

Associate Professor University of Santiago de Compostela Chemical Engineering Department, Santiago de Compostela, Galicia, Spain E-mail: juanmanuel.garrido@usc.es

Where I come from ?

Where I come from ?

Santiago de Compostela

Where I come from ?: Galicia

Group of Environmental Engineering and Bioprocesses

Head: Prof. Dr. Juan M. Lema Department of Chemical Engineering University of Santiago de Compostela (Spain) www.usc.es/biogrup

STAFF

8 Professors 3 Full Professors 5 Associated Prof. 5 Technicians 1 Technological Manager 6 Post-docs 27 PhD Students

RESEARCH TOPICS

4 Application of enzymes and fungi to the degradation and production of compounds Development, operation and control of wastewater treatment technologies **4** Environmental Management: Life Cycle Assessment and carbon footprint **Here** Biological treatment of gaseous waste streams

Development, operation and control of wastewater treatment technologies

- **4** Removal of micropollutants contained in municipal wastewater
- +Removal of nitrogen
 +Membrane bioreactors
 +Monitoring, control and operation of anaerobic digeste
 +Aerobic granulation
 +Recovery of phosphate as struvite

Index

Introduction Hybrid Biofilm-Suspended Biomass MBR, Lab scale

Materials and Methods Pilot scale Hybrid MBR Wastewater characteristics

Results

Urban sewage Fish canning wastewater: Brine stream wastewater Steam injection wastewater Conclusions Acknowledgements

Hybrid Biofilm-Suspended biomass MBRs

a little of history...

Hybrid MBR Suspended and Adhered Biomass

Department of Chemical Engineering University of Santiago de Compostela

Wastewaters fed during the lab-scale experiments:

Synthetic (Readily biodegradable COD)

Fish-canning factories

Tanning factories (suspended COD \uparrow)

Lab-scale experiments

Fish canning factory ww, OLR and NLR

	NLR	OLR	
Days	(kg N/m³-d)	(kg COD/m ³ ·d)	
0-45	0.8	3.2 – 4.7	
46-68	0.4	2.1 - 2.3	

Nitrifying capacity: Biofilm & Suspended biomass

Wastewater from a Fish canning factory

Department of Chemical Engineering University of Santiago de Compostela

Support: Granular rough particles of high density polyethylene (HDPE) Size 1-3 mm Density 0.89 g/cm³

Filtration Membranes

MF Porous Fibers (País Vasco)

UF Zenon Inc. ZW-10 (Canadá)

Characteristics of the membranes

Membrane module	Module	Characteristics	Operating time (d)
Microfiltration (MF) Porous Fibers (Spain)	Α	3% "looseness" Length 350 mm	0-42 54-117
	В	350 mm length 3% "looseness"	43-53
<u>Pore size 0.4 μm</u>	С	550 mm length 6% "looseness"	118-182
Ultrafiltration (UF) Zenon (Canada)	ZW-10		0-286
<u>Pore size 0.04 μm</u>			

RESULTS

UF and MF Membranes:

Flux Transmembrane pressure Permeability Microscopical observations

Flux of permeate in UF and MF membranes

Transmebrane Pressure (TMP)

Permeability of both membranes

External surface MF membrane

External surface UF membrane

RESULTS

Chemicals, biomass, microorganisms:

COD OLR and COD efficiency Ammonia nitrogen Nitrate Biomass Turbidity Microorganisms (Total Coliforms, E. Coli, Nematodes eggs)

Organic matter (COD)

Ammonia Nitrogen in the permeates

Nitrate in the influent and permeates

Suspended Biomass Concentration

Biomass was not wasted from the plant during the experiments!

Biomass adhered to the biofilm

Turbidity in the influent and permeates

Total Coliforms in the influent and permeates

Escherichia Coli in the influent and permeates

Nematode eggs in the influent and permeates

	California Water Reuse Guidelines		
	Unrestricted Urban Reuse	Restricted Urban Reuse	Results in the MBR plant
Treatment	Oxidized, coagulated, filtered, and disinfected	Secondary, oxidized and disinfected	Secondary, filtered
BOD ₅	NS	NS	COD Eff = 88% COD 70 mg/L (Avg)
TSS	NS	NS	ND
Turbidity	2 NTU (Avg) 5 NTU (Max)	NS	0.12 NTU (Avg) 1 NTU (Max)
Total Coliforms	2.2/100 ml (Avg) 23/100 ml (Max)	23/100 ml (Avg) 240/100 ml (Max)	4-28/100 ml

NS: Not specified

Water reuse experiments:

4 Plant Pots. Growth of grass irrigated with:

Permeate of the UF membrane Permeate of the MF membrane Tap water Tap water and nutrients (added)

Conclusions

Membranes:

The operation of the MF was problematic.

The UF module has shown to be reliable.

MF operated below 22 L/m²·h.

UF module can be operated up to 30 L/m²·h.

Conclusions

Very low biomass production. Biomass was not wasted. Suspended biomass lower than 3 g/L TSS. Biofilm concentration lower than 600 mg/L protein. COD effluent < 100 mg COD/L. N efficiency: 75% Amonia < 3 mg N-NH₄+/L and Nitrate < 10-15 mg N-NO₃-/L. OLR < 2 kg COD/m³-d.

Conclusions

Permeates with low Turbidity (Often below 0.2 NTU)

Membranes retained the nematode eggs

Secondary contamination of the permeates detected

Lower E. Coli or Total Coliforms when NaClO used (Once per week)

Disinfection still required for unrestricted urban reuse

Experiments in plant pots: No significant difference observed

Fish canning Wastewaters

Department of Chemical Engineering University of Santiago de Compostela

Fish canning factories in Spain

Processed Fish Products

DIFFERENT Wastewater Streams GENERATED !

Wastewater treatment plant: Process flowsheet

□ To evaluate the use of a Hybrid Biofilm-Suspended Biomass MBR for treating the wastewaters generated during tuna cooking.

2 different Tuna cooking processes are used by Fish Canning Factories:

□Brine Immersion (high salinity)

□ Steam injection (lower salinity)

Pilot Scale Hybrid MBR & Wastewater

Department of Chemical Engineering University of Santiago de Compostela

Schematic of the Hybrid MBR (pilot scale)

European Patent 1.484.287; University de Santiago de Compostela

Schematic of the Hybrid MBR (pilot scale)

Department of Chemical Engineering University of Santiago de Compostela

Support: Kaldness K-3

Department of Chemical Engineering University of Santiago de Compostela

Materials and Methods

Hollow fiber membrane

Module: Zenon ZW-10 Average pore size: 0.04 μm Nominal surface area: 0.9 m²

Operation

15 min permeation45 s backwashing with permeate

Materials and Methods

Hollow fiber membrane

Module: Porous Fibers Average pore size: 0.4 μm Nominal surface area: 0.9 m² Looseness: 6% Length: 350 mm

Operation

15 min permeation45 s backwashing with permeate

Materials and Methods

External tubular membrane

Module: X-Flow, model 11 PE Average pore size: 0.03 μm Nominal surface area: 0.150 m² Diameter of the tubes: 8 mm tubes (7 tubes)

X-Flow

Characterization of the 2 wastewater employed during the study

Parameters	Brine wastewater First stage	Steam wastewater Second stage
Period (days)	0-98	100-225
Conductivity (mS/cm)	Up to 89	< 20
Total COD (g/L)	8-12	17-26
Soluble COD (g/L)	7-11	16-25
Oil and Fats (g/L)	0.5-0.7	0.7-1.7
TSS (g/L)	1.1-2.1	1-1.2
Total Nitrogen (g/L)	1.2-1.8	2.5-4
Membrane Module used	Zenon ZW-10	Zenon ZW-10 (100-112 d)
		Porous Fibers (day > 112) X-Flow (117-176 & 218-327)

Results: First stage, Brine Wastewater

Department of Chemical Engineering University of Santiago de Compostela

Apparent biomass yield: 0.03 g VSS/g COD

Permeability of the ZW-10 membrane

Results: Steam injection Wastewater

Department of Chemical Engineering University of Santiago de Compostela

Second stage: Steam injection stream

Operation strategy: Wastewater diluted with Tap water

Second stage: Steam injection stream

Second stage: Biomass concentration

Apparent yield: 0.12 g VSS/g COD

Second stage: Nitrogen and Nitrogen Loading Rate

- Total N influent
- Ammonia permeate

Second stage: Steam injection stream

Porous Fibers

Salt concentration, up to 84 g/L affected COD efficiency, but after operating day 73 adaptation to the hypersaline conditions was observed.

- □ COD efficiency of 92% was obtained at the end of the experiment, at OLR of 1.4 kg COD/m³·d.
- **Organic nitrogen was hydrolyzed to ammonia, but salinity inhibited nitrification.**
- □ Low permeability, 20-50 L/m²·h·bar was obtained (Zenon ZW-10).
- **Uvery low biomass yield: 0.03 g-VSS/g-COD.**

Conclusions second stage: Steam injection stream

□ COD in the permeate not affected by COD in the influent and was lower than 100-150 mg/L.

 \Box OLR up to 4 kg COD/m³·d & NLR up to 0.55 kg N/m³·d.

□ Nitrogen concentration in the permeate lower than 100 mg/L.

□ Biomass yield around 0.12 g-VSS/g-COD.

Permeability of the tubular membrane higher than in the Hollow fibre membrane.
Acknowledgements

Regional government: Xunta de Galicia

Project PGIDIT05TAM013E

Priscila Artiga, Gaspar García

Espina y Delfin S.L.

Sonia Barros y Elena García 3R Ingeniería Ambiental

THANK YOU !