Three Stages Membrane Bioreactor (Methanogenic, aerobic biofilm and filtration) For the Treatment of Municipal Wastewaters

Dagmara Buntner, Alberto Sanchez, Juan M. Garrido

University of Santiago de Compostela Chemical Engineering Department, Santiago de Compostela, Galicia, Spain E-mail: juanmanuel.garrido@usc.es

Tlemcen University, Tuesday 9th February

Introduction

Development of the idea Pilot Plant design and strategy of operation Considerations for the design **Pilot plant: Three Stages MBR Strategy of Operation Results** Liquid phase **Biogas** Membrane **Biomass Conclusions** Acknowledgements

Introduction: Development of the idea

Main Objective:

Proposal European Project SAWRA, Call for Africa:

This project is aimed at exploring the applicability of **anaerobic bioreactors** with highly **efficient solid/liquid separation** and run at **ambient temperature** for **wastewater reuse** in agriculture by increasing its reliability and reducing treatment costs.

Wastewater treatment process

Simplified system of aerobic treatment

Chemical Engineering Department University of Santiago de Compostela

Wastewater treatment process – balances

Capacity and Efficiency of Anaerobic Reactors

Reactor	Volume	T (°C)	HRT	COD	Bimina	ti on (%)	Reference	
	(L)		(h)	influent	COD	SS		
EGSB	120	>13	1-2	391	16-34	-	Van der Last and Lettinga (1992)	
UASB	2	20	5-24	220-985	53-85	63-89	Ruiz et al. (1998)	
UASB	8	6-20	3-48	350-600	38-85	50-87	Singh and Viraraghavan (1999)	
UASB	46	28	4-8	297-463	68-76	73-78	Gonçalves et al. (1999)	
UASB	9000	28	7,5	-	80	90	Chernicharo y Cardoso (1999)	
UASB	21.5	13-19	4,7	115-595	64-72	73-84	Uemura and Harada (2000)	
UASB	3.8	13	8	456	65	88	日mitwalli et al. (1999)	
RH	3.8	13	8	456	66	92	日mitwalli et al. (1999)	
UASB	3.5	9-15	12	310	37-48	-	Bodick et al. (2000)	
UASB	416	28	4	511	71	66	Chernicharo y Nascimento (2001)	
UASB	150	21	6	569	71	79	Torres y Foresti (2001)	
UASB	23	29	3,9	320	65	76	Kalogo et al (2001)	
UASB	416	28	4-6	558-958	77-86	78-94	Von Sperling (2001)	
UASB	64000	25	6	267	63	-	Lettinga (2001)	
UASB	12000 ^a	27	6	-	54	65	Wiegant (2001)	
UASB	810 ^a	30	9,3	427	72	56	Horencio et al. (2001)	
RH	88	13	4	518	34	53	日mitwalli et al. (2002)	
EGSB	157.5	30.5	4	126-180	43-48	59-82	Kato et al. (2003)	
UASB	140	15	6	721	44	73	Mahmoud et al. (2004)	
UASB	54	10-28	13,5	750	48-82	-	Lew et al. (2004)	
UASB	60000	18-25	23-27	1500	51-62	50-55	Halalsheh et al. (2005)	
UASB	120	27	1-6	92-716	37-60	65-96	Leitao etal. (2005)	
UASB	25500	13-15	10-11	330	54-58	75-85	Álvarez et al. (2006)	
UASB	17	10-27	24	325	51-68	73-85	Sumino et al. (2007)	

Present work – the development

Present work – the concept

Support: Kaldness K-3

Chemical Engineering Department University of Santiago de Compostela

Pilot Plant design and strategy of operation

Considerations for the design of the reactor

Average Sewage:

COD Influent: 500 mg/L Flow rate: 480 L/d Organic Load: 240 g/d

Anaerobic reactor:

Organic Loading Rate (15 °C; 30% SS): 1.5- 2.0 kg/m3·d Percentage COD removal: 70 % Volume anaerobic chamber: Van= OL/OLR= 240/2 = **120 L**

Aerobic chamber:

Organic Load to the aerobic chamber: 0.3*240=72 g COD/d Organic Loading Rate: 2 kg/m^{3.}d (Leiknes 2008; Our research) Volume aerobic biofilm chamber: Vae= 72/2 = **36 L** Volume filtration chamber (ZW-10)= 20 L Support hold-up: 20-30% (v/v) Volume of support: 14.4 - 21.6 L

Overall Hydraulic Retention Time: (120+56)/480 = 0.4 d (9.0 h)

Considerations for the design of the reactor

Strong Sewage as influent

COD Influent: 1000 mg/L Flow rate: 480 L/d Organic Load: 480 g/d

Anaerobic reactor:

Organic Loading Rate (15 °C; 30% SS): 1.5- 2.0 kg/m3·d Percentage COD removal: 70 % Volume anaerobic chamber: Van= OL/OLR= 480/2 = **240 L**

Aerobic chamber:

Organic Load to the aerobic chamber: 0.3*480= 144 g COD/d Organic Loading Rate: 2 kg/m³·d Volume aerobic chamber: Vae= 144/1= **144 L** Support hold-up: 20-30% (v/v) Volume of support: 28.8 - 43.2 L

Overall Hydraulic Retention Time: (240+144)/480 = 0.8 d (19.2 h)

Considerations for the design of the reactor

Pilot Plant, Three Stages MBR

UASB	SMBR	FU
UPFLOW ANAEROBIC SLUDGE BLANKET REACTOR	SUPPORT MEMBRANE BIOREACTOR	FILTRATION UNIT
120 L	36 L	20 L

- 1. INFLUENT
- 2. UASB REACTOR
- 3. EFFLUENT FROM UASB REACTOR
- 4. BIOGAS OUTLET
- 5. SAMPLING PORTS
- 6. AEROBIC CHAMBER WITH SUPPORT
- 7. FILTRATION UNIT
- 8. PERMEATE

Chemical Engineering Department University of Santiago de Compostela

Pilot Plant, Three Stages MBR

Methanogenic Chamber Aerobic Biofilm Chamber Membrane Filtration Chamber

Pilot Plant, Three Stages MBR

1.- Start-up the reactor with a "synthetic wastewater free of solids" with a similar COD than Sewage (1000 mg/L). Study the effects of Temperature on efficiency and membrane fouling (12 months)

Reactor fed with skimmed milk diluted in tap water

- 2.- To use a "synthetic wastewater" with suspended organic matter. (3 months)
- 3.- To use pre-settled municipal wastewater. It is important to use microsieves with round openings of 0.8 – 1.0 mm. (3 months)
- 4.- To use degritted municipal wastewater. It is important to use microsieves with round openings of 0.8 – 1.0 mm. (3 months)

Operation strategy

ANALYSIS	1	2	3	4	5	6	7	8
Standard								
Temperature	daily	daily				daily		
рН	daily	daily				daily		
Alkalinity			daily					
DO						daily		
COD _{total}	3 x week		3 x week					3 x week
COD _{soluble}	3 x week		3 x week					
BOD _{total}	3 x week		3 x week					3 x week
NTK	3 x week		3 x week					3 x week
тос (IC, TC, тос)			3 x week				3 x week	3 x week
Anions Kations	3 x week		3 x week					3 x week
VFA			3 x week					
	Solids							
TSS					3 x week	3 x week		
VSS					3 x week	3 x week		
SMA		monthly						
Biogas								
Q _{gas}				daily				
Composition				3 x week				
Membrane								
Pressure							daily	
Filterability							NO	
Hux							NO	
ANALYSIS	1	2	3	4	5	6	7	8

Results: Liquid Phase

COD removal

BOD₅

COD removal

Chemical Engineering Department University of Santiago de Compostela

Dissolved Carbon: Organic (DOC) and Inorganic (IC)

TOC (mgC /L)

IC (mgc /L)

pH profile

Chemical Engineering Department University of Santiago de Compostela

Total Nitrogen (TN)

Nitrogen compounds

Phosphorous

Temperature, pH

Alkalinity

Biogas production

Membrane

Permeability and Flux

Transmembrane Pressure (TMP)

Filtrability

Transmembrane pressure (TMP) and Bacterial Polymeric Clusters (BPC)

Carbohydrates

Biomass

Biomass development

Specific methanogenic activity

Anammox activity

Day of operation

The reference: **0,5 gN/gVSS** ("Mother" reactor for Anammox bacteria cultivation)

> **Chemical Engineering Department University of Santiago de Compostela**

Methanogenic Biomass development

SAMPLING PORT 1

SAMPLING PORT 3

SAMPLING PORT 5

Methanogenic Biomass development

3rd February 2010

SAMPLING PORT 1

Size distribution Methanogenic Granules – Port 1

Volumen total	Volumen medio
2140,3	3 13,99
radio medio	diametro medio
1.49	2.99

Chemical Engineering Department University of Santiago de Compostela

Size distribution Methanogenic Granules – Port 3

Size distribution Methanogenic Granules – Port 5

Chemical Engineering Department University of Santiago de Compostela

Aerobic Biofilm development

30-10-2009

15-12-2009

08-01-2009

26-01-2009

Photos of the aerobic biofilm

Chemical Engineering Department University of Santiago de Compostela

FISH analysis: Methanogenic Sludge

Sampling port 1

Date: 08-12-2009

33 ARC915 cy3 Archaea (x100)

February 4, 2010

I EUB3381 Fluos Bacteria domain (x100)

Biology

- COD removal between 50-80 % in the methanogenic stage.
- Remaining biodegradable COD removed in the aerobic stage (biofilms)
- COD concentration lower than 30 mg/L at the effluent (permeate)
- Negligible BOD concentration at the effluent
- Anammox biomass development detected

Membrane

- Permeabilities in between 100 and 250 L/m²h·bar
- Membrane easily recovered using physical cleaning (water flushing)
- Membrane fouling tendency still worst than in aerobic MBR

Acknowledgements

Regional government: Xunta de Galicia

Project 09MDS009265PR

THANK YOU !

www.gaturro.com