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In this paper, we consider a simple chemostat model involving two obligate mutualistic species feeding
on a limiting substrate. Systems of differential equations are proposed as models of this association. A
detailed qualitative analysis is carried out. We show the existence of a domain of coexistence, which is
a set of initial conditions in which both species survive. We demonstrate, under certain supplementary
assumptions, the uniqueness of the stable equilibrium point which corresponds to the coexistence of the
two species.

Keywords: chemostat; competition; mutualism; asymptotic behaviour; coexistence; Dulac criterion;
Thieme’s result

1. Introduction

The study of the cooperation of living organisms has become of great interest over the last
few decades because it is a common feature in nature [2,3]. Zientz et al. [27] emphasized that
facultative or obligate intracellular bacteria can be found throughout the tree of life from protists
to plants and animals, and that such biological relationships could have culminated with the stable
integration of one cell into another as suggested in the endosymbiont theory [14,16]. In many
cases, using lab experiments, it has been shown that mutualistic relationships were obligatory
[4,5,10,17,18,24] and thus prevent competitive exclusion. Then, such interactions could be seen
as a major factor of biodiversity. The study of this kind of biological interaction is not only
relevant from a fundamental point of view but also from an engineering one. Indeed, in many
practical situations, rendering the presence of a microorganism stable within a complex ecosystem
presents important advantages. In particular, such obligatory relationships appear to be a possible
way of maintaining a given species into a natural ecosystem while most attempts to maintain it by
only playing with environmental conditions failed. Following this idea, a new class of synthetic
cooperative system has recently been proposed. They are called CoSMO for cooperation that is
synthetic and mutually obligatory [19]. In this paper, the yeast Saccharomyces cerevisiae was
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2 M. El Hajji et al.

genetically modified to obtain two nonmating strains with different metabolic capabilities so that
they behave essentially as two different species. More specifically they were made obligatory
mutualists, the first one producing a protein necessary for the growth of the second one (while this
synthesis was blocked within the metabolism of this second one) and conversely. Together, these
two strains form a cooperative system that mimics two-species obligate mutualistic systems while
being in competition on a single resource for their growth. The present paper aims at modelling
such a complex system in a chemostat and at studying its theoretical properties.

The chemostat is an important laboratory apparatus used for the continuous culture of micro-
organisms. In ecology, it is often considered as a model of a simple lake system or of a wastewater
treatment process. It is an excellent experimental venue in which one can study the effect of
simple microbial interactions, including competition. Different mathematical models have been
developed and analysed extensively by many different investigators (see, for example, the recent
monograph by Smith and Waltman [21] and the references therein). Mathematical models of the
chemostat are among the few predictive models in microbial ecology. The classical model of
competition for a nonreproducing substrate in a well-stirred chemostat operated under constant
input concentration and dilution predicts competitive exclusion. That is, it predicts that at most
one competitor population avoids extinction [6,21,25,26]. However, the coexistence of competing
populations is ubiquitous in nature. So, in order to explain this, it seems necessary to relax at
least one of the assumptions in the above model. One natural approach is to introduce periodic
coefficients to represent, for example, daily or seasonal variations in the environment. For this
purpose, there has been some research on models of the chemostat involving either periodic
nutrient input or periodic dilution rates [9,20,21]. An other natural approach is to make the
hypothesis of a ratio-dependent growth rate [8,13,12,11,15] in the sense of [1]. As explained
above, our approach in this paper is to consider obligate mutualism in the specific context of
the competition of two species for a ressource.

Freedman et al. [7] have proposed a particular model of two mutualistic predators.They assumed
that the resource is governed by a logistic law and proved the existence of a locally stable equi-
librium with both predators present. But the global behaviour is not described since it can be
complex.

Our objective in this article is to reconsider the analysis of Freedman et al. [7] in the simpler
case of a CoSMO system in the chemostat where, as it is well known, the presence of an attractive
invariant set allows us to return the qualitative study to dimension 2. We prove the existence of two
positive invariant domains such that one of them predicts the extinction and the other ensures the
coexistence of the two species. We demonstrate, under certain supplementary assumptions, the
uniqueness of a stable equilibrium point which corresponds to the coexistence of the two species.
Finally, we illustrate the above results by numerical simulations.

2. Mathematical model and results

In this section we present our model and our results as Theorems 1–3 and their corollaries.
Let s, x1 and x2 denote, respectively, the concentration of substrate and the two microorganisms

present in the chemostat at time t. We ignore all species-specific death rates and only consider the
dilution rate. Our model is described by the following ordinary system of differential equations:

ṡ = D(sin − s) − f1(s, x2)x1 − f2(s, x1)x2,

ẋ1 = (f1(s, x2) − D)x1,

ẋ2 = (f2(s, x1) − D)x2, (1)

where sin denotes the input concentration of nutrient and D is the dilution rate.
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Journal of Biological Dynamics 3

The functional response of each species fi : R
2+ → R+, i = 1, 2, satisfies:

H1: f1 and f2 are two C1(R2+) functions.
H2: f1(0, x2) = f2(0, x1) = 0, ∀ (x1, x2) ∈ R

2+.
H3: (∂f1/∂s)(s, x2) > 0, ∀ (s, x2) ∈ R

2+ and (∂f2/∂s)(s, x1) > 0, ∀ (s, x1) ∈ R
2+.

H4: (∂f1/∂x2)(s, x2) > 0, ∀ (s, x2) ∈ R
2+ and (∂f2/∂x1)(s, x1) > 0, ∀ (s, x1) ∈ R

2+.
H5: f1(s, 0) = f2(s, 0) = 0, ∀ s ∈ R+.

Hypothesis H2 expresses that no growth can take place without substrate; hypothesis H3
means that the growth increases with substrate. Hypothesis H4 expresses the mutualism between
species and the hypothesis H5 characterizes the obligate case where no nutrient uptake by one
species occurs unless the other species is present.

We do not claim that Equation (1) plus H1–H5 is a realistic model for the CoSMO system of
bacteria. Actually it should be better to introduce in the model two supplementary state variables
p1 and p2 representing the concentrations of the proteins produced, respectively, by species 1 and
species 2, which are necessary for the growth of species 2 and species 1, respectively. But in this
case the model would be in R

5 and thus much more difficult to study. The model (1) is just a first
step and its interest relies on the fact that it is completely tractable from the mathematical point
of view.

Let us recall two fundamental well-known properties of the model of the chemostat [21].

Proposition 1 (1) For every initial condition in R
3+, the solution of system (1) has positive

components and is bounded and thus is defined for every positive t.
(2) The set � = {(s, x1, x2) ∈ R

3+/s + x1 + x2 = sin} is a positive invariant attractor of all
solutions of system (1).

For the convenience of the reader, we provide a proof.

(1) The invariance of R
3+ is guaranteed by the fact that if s = 0 then ṡ = Dsin > 0 and if xi = 0

then ẋi = 0 for i = 1, 2. Next we have to prove that the solution is bounded. If one adds the
three equations of system (1), then one obtains, for z = s + x1 + x2, a single equation:

ż =
˙︷ ︸︸ ︷

(s + x1 + x2) = −D(s + x1 + x2 − sin) = −D(z − sin);

then

z = s + x1 + x2 = sin + Ke−Dt where K = z(0) = s(0) + x1(0) + x2(0) − sin.

Since each term of the sum is positive, the solution is bounded.
(2) Point 2 is a direct consequence of the previous relation.

2.1. Restriction on the plane

We are interested in the asymptotic behaviour of the solutions of system (1). It is tempting to
think that because the solutions of system (1) are exponentially convergent towards the set �, it is
enough to restrict the study of the asymptotic behaviour of system (1) to �. In fact, this is false, in
general, as shown by examples in [22,23]. However, fortunately, in our case, thanks to Thieme’s
results [22], the asymptotic behaviour of the solutions of the restriction of Equation (1) on � will
be informative for the complete system. This justifies our study of the following reduced system.
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4 M. El Hajji et al.

Using the fact that s = sin − x1 − x2, the projection, on the plane (x1, x2), of the restriction of
system (1) on � is given by

ẋ1 = x1(f1(sin − (x1 + x2), x2) − D) = g1(x1, x2) x1,

ẋ2 = x2(f2(sin − (x1 + x2), x1) − D) = g2(x1, x2) x2,

x1, x2 ∈ T = {(x1, x2) ∈ R
2
+/0 ≤ x1 + x2 ≤ sin}. (2)

Let

�1 = {(x1, x2) ∈ T ; g1(x1, x2) = 0} = {(x1, x2) ∈ T ; f1(sin − (x1 + x2), x2) = D}
and

�2 = {(x1, x2) ∈ T ; g2(x1, x2) = 0} = {(x1, x2) ∈ T ; f2(sin − (x1 + x2), x1) = D}.
We remind that the nul-clines (ẋ1 = 0 and ẋ2 = 0) of system (2) are the sets:

C1 = �1 ∪ {(x1, x2) ∈ T ; x1 = 0} and C2 = �2 ∪ {(x1, x2) ∈ T ; x2 = 0}.
H6: Assume that the nul-clines are in ‘general position’, which means that �1 and �2 have a finite

number of intersection points where �1 and �2 are transverse.

System (2) admits E0
p = (0, 0) as an equilibrium point. Hypothesis H5 implies that there is no

equilibrium point of the form (x̄1, 0) nor (0, x̄2) where x̄1 > 0 and x̄2 > 0. However, this system
can have positive equilibrium points.

Theorem 1 (1) There cannot be periodic orbits nor polycycles inside �.
(2) E0

p is a locally asymptotically stable equilibrium point and if maxR+×R+ fi(s, xj ) ≤ D for at
least one of the two species, then E0

p is the only equilibrium point.
(3) If maxR+×R+ f1(s, x2) > D and maxR+×R+ f2(s, x1) > D, there can exist positive equilib-

rium points of the form E∗
p = (x∗

1 , x∗
2 ) where x∗

1 > 0 and x∗
2 > 0. In this case, there exist two

domains R0 and R∗ such that for every initial conditions in R0, the two species go to extinction
and for every initial conditions in R∗, the two species persist.

Proof of Theorem 1. (1) Let us make the change of variables X1 = Ln(x1) and X2 = Ln(x2), then
system (2) becomes

Ẋ1 = g1(e
X1 , eX2),

Ẋ2 = g2(e
X1 , eX2).

Let

G(X1, X2) =
(

g1(eX1 , eX2)

g2(eX1 , eX2).

)

The divergence of G is given by

div G = −
[

eX1
∂f1

∂s
(sin − (eX1 + eX2), eX2) + eX2

∂f2

∂s
(sin − (eX1 + eX2), eX1)

]
< 0

and the Dulac criterion [23] allows us to conclude.

(2) As f1(sin, 0) = f2(sin, 0) = 0, then, there exists a neighbourhood V 1 of (0, 0) such as
(f1(sin − (x1 + x2), x2) − D)|V1 < 0 which implies that ẋ1 < 0 and a neighbourhood V 2 of (0, 0)
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Journal of Biological Dynamics 5

such that (f2(sin − (x1 + x2), x1) − D)|V2 < 0, which implies that ẋ2 < 0, then ∀(x1(0), x2(0)) ∈
V1 ∩ V2, (x1, x2) converges to (0, 0)

We can also deduce the local stability of E0
p by computing the Jacobian matrix at (0, 0).

If maxR+×R+ fi(s, xj ) ≤ D for at least one of the two species, then there are no intersection
points between the sets �1 and �2, then E0

p is the only equilibrium point.
(3) Using the fact that functions x1 → f1(sin − (x1 + x2), x2) and x2 → f2(sin − (x1 + x2), x1)

are decreasing, we deduce immediatly that the sets �1 and �2 are the graphs of two functions
x1 =γ 1(x2) and x2 =γ 2(x1). If maxR+×R+ f1(s, x2) > D and maxR+×R+ f2(s, x1) > D, then
the graphs �1 and �2 (the D-level line of function f1 and f2) are non-empty. By (H6), these
sets can intersect only at a finite number of equilibrium points of the form E∗

p = (x∗
1 , x∗

2 ),
where x∗

1 > 0 and x∗
2 > 0, called positive equilibrium points.

Since E0
p is locally asymptotically stable, there exists an attraction domain R0 to (0, 0).

Assume that the sets �1 and �2 intersect at some points. Then R∗ =��R0 is non-empty and
is a persistence domain. Indeed, for every initial conditions in R0, all species vanish and for
every initial conditions in R∗, (x1, x2) converges to a stable equilibrium point (x∗

1 , x∗
2 ) where

x∗
1 > 0 and x∗

2 > 0.
�

Remark 1 There exist two limit values σ 1 > 0 and σ 2 > 0 such that if xi(0) ≤σ i and 0 ≤ xj(0) ≤ sin

for i, j = 1, 2, i 	= j, then the two species vanish. This means that the rectangles [0, σ 1] × [0, sin]
and [0, sin] × [0, σ 2] are contained in R0.

Assume that the sets �1 and �2 intersect at some points. Let us call S1, N1, S2, N2, . . . , Sn

and Nn the intersection points along �2 where we increase x1 from 0 (see Figure 1). The tan-

gent vector to �1 (respectively, �2) at an intersection point is given byT1(x
∗
1 , x∗

2 ) =
(

γ ′
1(x

∗
2 )

1

)
(

respectively, T2(x
∗
1 , x∗

2 ) =
(

1
γ ′

2(x
∗
1 )

))
.

The nature of the positive equilibrium points is given in the following lemma.

Lemma 1 (1) If det (T1, T2) < 0, the equilibrium is locally asymptotically stable and if
det (T1, T2) > 0 the equilibrium is a saddle point.

(2) The equilibrium points Si, i = 1, n, are saddle points and the equilibrium points Ni, i = 1, n,
are locally asymptotically stable.

Proof The Jacobian matrix of system (2) at (x∗
1 , x∗

2 ) is given by

A∗
p =

⎡
⎢⎣ −x∗

1

∂f1

∂s
x∗

1

∂f1

∂x2
− x∗

1

∂f1

∂s

x∗
2

∂f2

∂x1
− x∗

2

∂f2

∂s
−x∗

2

∂f2

∂s

⎤
⎥⎦

with characteristic equation for the eigenvalues:

P(λ) = λ2 − tr(A∗
p)λ + det(A∗

p) = 0.

The derivatives of γ 1 and γ 2 are given by

γ ′
1(x2) = −1 + ∂f1/∂x2

∂f1/∂s
and γ ′

2(x1) = −1 + ∂f2/∂x1

∂f2/∂s
,
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6 M. El Hajji et al.

hence

det (T1, T2) = γ ′
1(x2) γ ′

2(x1) − 1 =
(

∂f1

∂x2

∂f2

∂x1
− ∂f1

∂s

∂f2

∂x1
− ∂f1

∂x2

∂f2

∂s

)/
∂f1

∂s

∂f2

∂s
.

We verify immediately that det (A∗
p) = −x∗

1x∗
2 (∂f1/∂s)(∂f2/∂s) det (T1, T2). Then:

(1) If det (T1, T2) < 0, then det (A∗
p) > 0 and the equilibrium is locally asymptotically stable and

if det (T1, T2) > 0, then det (A∗
p) < 0 and the equilibrium is a saddle point.

(2) For the equilibrium points Ni, i = 1, ndet (T1, T2) < 0, then det(A∗
p) > 0, and they are locally

asymptotically stable and for the equilibrium points Si, i = 1, n, det (T1, T2) > 0, then
det(A∗

p) < 0 and the points Si, i = 1, n, are saddle points.

�

Remark 2 The nature of the positive equilibrium points depends on the location of the graph
�1 with regard to the graph �2 at the intersection point. Assume that the orientation of �1 is by
increasing x2; then if �1 is going inwards in the region of the x1x2-plane bounded by the graph
�2 and the x1-axis, then this point is a saddle point and if �1 is going outwards, then this point is
locally asymptotically stable. In particular, the first intersection is a saddle point.

Figure 1. Location of graph �1 with regard to the graph �2.

Example 1 In order to show that the number of positive equilibria could be greater than 2, we
have constructed two functions that satisfy the necessary conditions of Theorem 1 for the existence
of positive equilibrium points:

f1(s, x2) = 2

π
arctg(50x2)s + 2

π
[β1x2 + α1 sin(ω1x2)] arctg(50s),

f2(s, x1) = 2

π
arctg(50x1)s + 2

π
[β2x1 + α2 sin(ω2x1)] arctg(50s),

(3)

where the constants αi, β i and ωi are strictly positive, such that αiωi <β i, i = 1, 2. We present
here the cases of four and six positive equilibrium points (see Figures 2 and 3).
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Journal of Biological Dynamics 7

Figure 2. β1 = 2.2, β2 = 2, α1 = α2 = 0.35, ω1 = ω2 = 5.

3210
0

1

2

3

Figure 3. β1 = 2, β2 = 2.2, α1 = 0.195, α2 = 0.18, ω1 = ω2 = 10.

Corollary 1 If E0
p is the only equilibrium point, then it is globally asymptotically stable

and R0 =�.

Proof We assume that E0
p is the only equilibrium point. Since the omega limit set of any tra-

jectory is contained in the two-dimensional compact and positively invariant set �, and E0
p lies

on the boundary of �, E0
p must be globally asymptotically stable by the Poincaré–Bendixson

theorem. �
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8 M. El Hajji et al.

2.2. Uniqueness of the stable equilibrium point

Next, we present some constraints on the response functional for which we have at most one
stable positive equilibrium point.

Theorem 2 If �1 and �2 are concave, then system (2) has at most two positive equilibrium
points. There exists a value D0 such that

(1) If D < D0, system (2) has exactly two equilibrium points in the interior of �; one of them is
locally asymptotically stable and the second is a saddle point.

(2) If D > D0, then there are no equilibrium points in the interior of �.

Proof of Theorem 2. Assume that �1 and �2 intersect. Let A and B be two consecutive inter-
section points. Let �AB be the straight line joining A and B, let �A be the parallel to the second
bissectrice passing through A and �B the one passing through B. These three lines define six
regions 1A, 1AB, 1B and 2A, 2AB, 2B in the plane (see Figure 4). Since the function (x1, x2) �→
f1(sin − (x1 + x2), x2) is monotone along any line x1 + x2 = k, it turns out that the lines �A and
�B must not intersect �1 except in A and B. �1 is a graph of a concave function of x2, and the
position of �1 between A and B must belong to 2AB. This proves that �1 must belong to 1A and
1B. For the same reasons, �2 must belong to 1AB, 2A and 2B and by the way �1 ∩ �2 is reduced
to A and B.

Using Lemma 1, A is a saddle point and B is a stable equilibrium point.
�1 and �2 are the D-level line of functions (x1, x2) �→ f1(sin − (x1 + x2), x2) and (x1, x2) �→

f2(sin − (x1 + x2), x1); hence there exists a value D0 such that if D < D0, system (2) has two
equilibrium points inside � and if D > D0, there are no intersection points. �

Figure 4. �1 and �2 are concave.

We present in the next corollary two particular cases for which the conditions of Theorem 2
are satisfied and by the way the uniqueness of the stable equilibrium point inside �.
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Journal of Biological Dynamics 9

Corollary 2 Let f1 and f2 be two C2(R2+) functions. If one of the next conditions is satisfied,

(1) f1 and f2 are concave functions,
(2) f1(s, x2) = g1(s) h1(x2) and f2(s, x1) = g2(s) h2(x1) where g1, g2, h1 and h2 are four concave

functions,

then system (2) has at most two equilibrium points inside � of which only one is locally
asymptotically stable.

Proof (1) If the functions f1 and f2 are concave then their Hessians H1 and H2 are negative
semidefinite matrix. In particular,

γ ′′
1 (x2) = 〈H1v1, v1〉

∂f1/∂s
< 0 and γ ′′

2 (x1) = 〈H2v2, v2〉
∂f2/∂s

< 0,

where v1 = (γ ′
1(x2) + 1, − 1)T and v2 = (γ ′

2(x1) + 1, − 1)T.
Hence the graphs �1 and �2 are concave and the result is deduced from Theorem 2.

(2) If f1(s, x2) = g1(s)h1(x2) and f2(s, x1) = g2(s)h2(x1) where g1, g2, h1 and h2 are concave
functions, then

γ ′′
1 (x2) = −2(γ ′

1(x2) + 1)g′
1(s)h

′
1(x2) + g1(s)h

′′
1(x2) + (γ ′

1(x2) + 1)2g′′
1 (s)h1(x2)

g′
1(s)h1(x2)

< 0

and

γ ′′
2 (x1) = −2(γ ′

2(x1) + 1)g′
2(s)h

′
2(x1) + g2(s)h

′′
2(x1) + (γ ′

2(x1) + 1)2g′′
2 (s)h2(x1)

g′
2(s)h2(x1)

< 0

then graphs �1 and �2 are concave and the result is deduced from Theorem 2.

�

Remark 3 If f1(s, x2) = a1 x2 g(s) and f2(s, x1) = a2 x1g(s), we can verify immediatly that:

a2x1 − a1x2 = (a2x1(0) − a1x2(0))e−Dt

then the qualitative study can be reduced to one dimensional.

2.3. Reconstruction of the asymptotic behaviour of system (1)

It turns out that the phase portrait of system reduced to � (2) contains only locally stable equilibria,
saddle points and no trajectory joining two saddle points. Thus we can apply Thieme’s results [22]
and conclude that the asymptotic behaviour of the solution of the complete system (1) is similar
to the asymptotic behaviour described for the reduced system (2).

Let E0 = (0, 0, 0) and E∗ = (s∗, x∗
1 , x∗

2 ) be the equilibrium points of system (1) such that its
projection in the plane (x1, x2) are the equilibrium points E0

p = (0, 0) and E∗
p = (x∗

1 , x∗
2 ) of

system (2).

Theorem 3 (1) E0 is locally asymptotically stable.
(2) E∗

p and E∗ have the same type of stability.
(3) The ω-limit set of a solution of Equation (1) is reduced to one of the equilibria of Equation (1).
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(4) If the persistence domain is non-empty for the reduced system (2), then the persistence domain
of the full system (1) is non-empty. Any trajectory of initial condition in this domain converges
to an interior equilibrium point in �.

Proof of Theorem 3. Let us recall that z = s + x1 + x2. We verify immediately that system (1) is
equivalent to the system below:

ż = −Dz,

ẋ1 = x1(f1(z − (x1 + x2), x2) − D),

ẋ2 = x2(f2(z − (x1 + x2), x1) − D).

(1) The Jacobian matrix at E0 is − DI3, then E0 is locally asymptotically stable.
(2) The Jacobian matrix at E∗ is given by

A∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−D 0 0

x∗
1

∂f1

∂s
−x∗

1

∂f1

∂s
x∗

1

∂f1

∂x2
− x∗

1

∂f1

∂s

x∗
2

∂f2

∂s
x∗

2

∂f2

∂x1
− x∗

2

∂f2

∂s
−x∗

2

∂f2

∂s

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Thus − D is an eigenvalue and the two other eigenvalues are the same as those of A∗
p associated

to system (2), then the positive equilibrium points E∗ and E∗
p have the same nature.

(3) Let (s, x1, x2) some bounded solution of system (1) then its ω-limit, called ω, set is not empty.
We have seen that s = sin − x1 − x2 + Ke−Dt and (x1, x2) is solution of

ẋ1 = x1(f1(sin − (x1 + x2) + Ke−Dt , x2) − D),

ẋ2 = x2(f2(sin − (x1 + x2) + Ke−Dt , x1) − D). (4)

For every value of s(0), we have a non-autonomous system (4) in which the right-hand side
converges to the right-hand side of system (2). The set ω is contained in �, which contains
only a finite number of equilibrium points. On the other hand, we saw that the reduced system
(2) does not admit periodic orbits nor cyclic chains. From [22, Theorem 1.6], we deduce that
the ω-limit set consists of an equilibrium of Equation (2).

(4) Using Thieme’s results [22], we conclude that if systems (1) and (2) have the same asymptotic
behaviour, then the persistence domain of the full system (1) is non-empty. �

3. Numerical simulations

We performed numerical simulations on the two systems. The first uses classical Monod functions
to express growth rates, and the second is somewhat artificial and uses the two functions we used
in example 1 to show that the number of interior equilibria could be greater than 2.

In both cases, we compare two different values of the dilution rate D showing the bifurcation
phenomenon (see Figures 5 and 6).
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Figure 5. Left: the green trajectories are filling the domain R∗ of coexistence and converging to the equilibrium N. The
red trajectories converge to (0, 0) and fill the domain R0. The boundary of R0 and R∗ consists in the two stable trajectories
of the saddle point S. Right: the domain R0 is the whole domain �. Available in colour online.

Figure 6. Left: the red trajectories fills the domain R0. The blue, green and yellow trajectories are filling the coexistence
domain R∗. Blue trajectories converges to N1, green ones to N2 and yellow ones to N3; the reached equilibrium depends
on initial conditions. Right: the domain R0 is the whole domain �. Available in colour online.
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3.1. Numerical test 1

ṡ = D(3 − s) − 4
s

1 + s

x2

1 + x2
x1 − 6

s

1 + s

x1

2 + x1
x2,

ẋ1 =
(

4
s

1 + s

x2

1 + x2
− D

)
x1,

ẋ2 =
(

6
s

1 + s

x1

2 + x1
− D

)
x2. (5)

3.2. Numerical test 2

ṡ = D(3 − s) −
(

2

π
arctg(50x2)s + 2

π
[2x2 + 0.195 sin(10x2)] arctg(50s)

)
x1

−
(

2

π
arctg(50x1)s + 2

π
[2.2x1 + 0.18 sin(10x1)]arctg(50s)

)
x2,

ẋ1 =
(

2

π
arctg(50x2)s + 2

π
[2x2 + 0.195 sin(10x2)] arctg(50s) − D

)
x1,

ẋ2 =
(

2

π
arctg(50x1)s + 2

π
[2.2x1 + 0.18 sin(10x1)] arctg(50s) − D

)
x2. (6)

4. Conclusion

We have considered the mathematical model (1) of competition for one resource with obligate
mutualism. We proved, under general and natural assumptions of monotony on f1 and f2, the
existence of a domain of extinction and a domain of persistance. Under these general assumptions
the persistance equilibrium is not necessary unique as we showed with a somewhat artificial
example (6). If we restrict to functions f1 and f2, which are the products of Monod functions as it
is often the case in more specific biological models, the equilibrium is unique.
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