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» Hybrid system is a dynamical system described by a
combination between discrete and continuous dynamics.

» Switched system is an hybrid system that can be seen as a
continuous system with switching events.

» The switching events are subjected to a switching signal
depending on the time, the state or both.

» Switched Slow-Fast System is a system with slow and fast
dynamics with a fast switching signal depending on the
time.
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» Slow-fast switched system :
{ 62% = fu(X7.ya€)

% = gU(X’y76)a

ue U:={0,1}

(x,y) eR"xR™  e=0

» The switching signal u : Rt — U is a periodic piecewise
constante function.
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» To define u, we suppose given
- a continuous 1-periodic real function © : R — [0, 1],
- a positive integer N € N*,
We define a P-periodic switching signal u over one period
P := eN (fast switching) by

_ [0 if telehe(i+6)),
“(t){1 it tele(i+6;),e(i+1)), 1)

fori=0.N—1and6§; = ().
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» To define u, we suppose given
- a continuous 1-periodic real function © : R — [0, 1],
- a positive integer N € N*,
We define a P-periodic switching signal u over one period
P := eN (fast switching) by

_ [0 if telehe(i+6)),
“(t){1 it tele(i+6;),e(i+1)), 1)

for i =0..N — 1 and 6; = ©(5).

» Here the switching signal depends only on the time so that
the Switched System becomes singularly perturbed and
P-periodic on the time t.
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We consider two scales of the time, the slow time t and the fast
time 7 = t/€2, the switched system has two limit systems when

e tends to 0,
» at the slow time ¢ :
{ 62% = fu(x,y,e),
7}; - gU(X7y7 6)7
» at the fast time 7 :
{ %: fu(X,y,E),
T{— = €2gU(X’y7 E)a

x(0) = xo
yO =y {
x(0) = xo,
yO) =yo, {

ay

0 = fu(x,y,0)
ar — Qu(X,%O)
%_ fU(vaaO)
¥ — 0
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» x varies quickly and is approximated by the solution of the
boundary layer equation

ax

dr = fU(X7y070)7 X(O) = Xo

» The equation & = f,(x, y,0) is the fast equation.
ar

» Assume that the solution of the boundary layer equation
tends to a stationary point £,(yo), solution of
fu(X, ¥0,0) = 0.

» the set of the stationary points of the fast equation is the
slow manifold. (set of the roots of the equation
fu(mea O) = O)
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The solution of the switched system is defined for all > 0 and
tends to a stationary point (£4(¥0), ¥o)- Hence a fast transition
brings the solution of system near the slow manifold where a
slow motion takes place and is approximated by the solution of
the reduced problem

a
o = 0u&().5.0). ¥(0) =y

which is the limit system at the slow time ¢:

{ 0= fU(Xay70),
W = gu(x,y,0), y(0)=yo
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The above description is precised by Tykhonov’s theorem,
» H1. For each u € {0,1}, f, and g, are C'-functions.

» H2. For each u € {0, 1}, there exists an m-dimensional
compact manifold £, subset of the slow manifold, given as
a graph of a continuous function ¢, defined in a compact
domain K, C R™ and for all y € Ky, £u(y) is an isolated
root of fy(x,y,0) = 0.

» H3. Foreach u € {0,1} and each y € K|, the point

x = &y(y) is an exponentially asymptotically stable
equilibrium point of the fast equation.
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Remark

» H3 means that, by using implicite function theorem, one
can define at least locally the slow manifold as a graph of a
continuous function.

» H2 says that one can extend globally this definition of L,
over a compact domain K.
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Theorem
Under hypothesis H1-H3, let

» (X0, ¥o) in the basin of attraction of L,

» () be the solution of the boundary layer equation,

» (t) be the solution of the reduced problem,

» | the positive interval of definition of 1.
Let T € I then
Vn > 0, Jeg, Ve € (0, €p), the solution (x(t), y(t)) of switched
system starting at (xo, Yo) is defined at least on [0, T] and
aMn > 0, el < n and

Ix(27) — ()| <n, for O
[x(8) — E((D)|| <n, for €M
1y () — (O <mn, for 0<

<7<,
<t<T,
t<T.
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» H4. The slow manifolds £, for u € {0, 1} of the switched
system have the same basin of attraction B(L,).

» H4 allows us to define the slow manifolds £, on the same
compact domain K

Ly={(x,y) eR"xR™ /x =&(y), Yy € K}

> Let N e N* fixed and © = SN ' 4.
We define the differential equation

(Z = G(7) := ©g0(£0(7), 7,0) + (N — 8)g1 (&1(7), 7. 0)
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» Theorem
If there exists an exponentially asymptotically stable equilibrium
point yo € R™ of equation

() ¥~ a) = baeo(). 7.0) + (N - ©)gi(&:(7).7.0)

thenVn > 0, Jeg such that Ve < €p, the switched system admits
a P-periodic solution starting at (x*, y*) such that
{ [x* =& (o)l <,
ly* = Yol <

» Theorem
If there exists an asymptotically orbitaly stable T -periodic
solution of equation (*) starting at yo € R™, thenVn > 0, Jeg
such that Ve < eg satisfying ElN = L € N, the switched system
admits a T-periodic solution starting at (x*, y*) such that
{ [x* =& (Yo)ll <m,
ly* = Yoll <.



Main Results 3/3
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» We define the differential equation

ORI Aye(%7

where

G(tv }_/) = @(t)go(fo(}_/),}_/,()) + (1 - @(t))g1 (51 (.}7)’}_/7 O)

» Theorem
If there exists an asymptotically stable 1-periodic solution of
averaged equation (**) starting at the point yy € R,
thenVn > 0, Jeg such that Ve < eg, the switched system admits
a P-periodic solution starting at (x*, y*) such that

{ 1x* =& (o)l < n,
ly* = Yoll <.
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» The dynamic of a population of microalgual in a fluctuating
environment (J.-M. Guarini, G. Blanchard, P. Gros)



Exemple 1
» The dynamic of a population of microalgual in a fluctuating
environment (J.-M. Guarini, G. Blanchard, P. Gros)
» In the positive 1/4-plane {(x,y) € R?/ x >0,y > 0}.

>

{{ﬁzmuﬁwr: ry(1 —x) +ex[(p— r)(1 —x) — ey
T =9(x,y,€) = px—py,

{ 620?7); = f1(X7.y7 6) = _(1 + 62M)X
T =9 y.€) = —ny.
u is a P-periodic switching signal defined over one period
P = ¢N by
[0 if teede(i+6)),
“(t){ 10t te [ei+6),e(i+ 1)), @)

where i=0.N—-—1and 0 <¢; <1.



» Slow manifold L4 is the straight line x = 0.

» N =1, the first theorem implies existence of an e-periodic
solution close to (1, ¥).

» Averaged equation

¥ _a

o (y) == —py + pbo

which admits the equilibrium point y = %90.



» (t) = (2 + sin(2nt)) /4, the averaged equation (**)
becomes
dy
g = Glty) = —py + po(t)

which admits an asymptotically stable periodic solution

y(t) = g <i + 27T1+ . sin(27rt)>

» If N= O(1/¢) we can apply the third theorem.






Example 2

Consider in R3 the following switched system

62%—1‘0(X,U,V,e) = —x— P41,
WY — go(x,u,v) = v, @)
W — ho(X, U, V) i= —U+ XV,
and
e = fi(x,u,v) = —Xx+uU+}B,
W — gy (x,u,v) = v, "

W = h(x,u,v)i= B—x+y(x+1-B8)(1-u)v,

v>0,8>2,0(t) = (2+sin(2rt))/4



» Slow manifolds
Lo={(x,u,v) € R3 x =¢&(u,v) :=1-u?} and
Ly ={(x,u,v) €R3 x =& (u,v) = u+ 5}

» The reduced corresponding equation

d .
{d‘t’: v, =01,

X = —ut+y(1- By,

()

that is van der Pol equation which admits, since v > 0, an
asymptotically orbitally stable periodic solution. So we can
apply the second theorem.



,x.x ﬁ\\

s\\\\ _\

/

iy

i
_..




Introduction
What is a Slow-Fast Switched System ?

Slow-fast systems and Tykhonov’s theorem
Main Results

Application and Simulation
Examples

Averaging

«O>» «Fr «=>»

<

i
v

DA



Averaging 1/2

» Suppose N = O(1) and let (x(t), y(t)) the solution of the
switched system starting at time & = 0 from (xo, o) € L4
(i.e. xo = &1(¥o)) and consider the sequence
(Xn, ¥n), n € N, defined

(Xn, ¥n) = (x(tn), ¥(tn)), with t, = nP
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» Suppose N = O(1) and let (x(t), y(t)) the solution of the
switched system starting at time & = 0 from (xo, o) € L4
(i.e. xo = &1(¥o)) and consider the sequence
(Xn, ¥n), n € N, defined

(Xn, ¥n) = (x(tn), ¥(tn)), with t, = nP

» Proposition
For each n > 0 there exists ey such that for all e < ¢q the
sequence (Xp, yn) verifies

{ %0 — & ()l <,
1¥n — 7(ta)]l <.

where y(t) is the solution of

(;J;/ = G(}_/) = égo(ﬁo(}_’)a}_’ao) + (N - é)g1 (51 (}_/),}_/, 0)
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» Suppose now N = O(1/¢) and consider the sequence
(Xn, ¥n), n € N, defined by

(Xn, ¥n) = (x(tn), y(tn)), with th = ne
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» Suppose now N = O(1/¢) and consider the sequence
(Xn, ¥n), n € N, defined by

(Xn, ¥n) = (x(tn), y(tn)), with th = ne

» Proposition
For each nn > 0 there exists eg such that for all e < ¢g the
sequence (Xp, yn) verifies

{ [[Xn = &1 (yn) Il < n,
1yn = ¥(t)ll <.

where y(t) is the solution

ijz = G(t,y) = ©(t)90(0(¥), ¥,0) + (1 = ©(1)91(¢1(¥), ¥, 0).

starting at ty = 0 from the point yj.
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