Periodic solution of switched slow-fast systems

Nadir Sari

Laboratoire de Mathématiques MIA Université de La Rochelle-France

Modèle mathématique pour le traitement de l'eau
Tlemcen, Février 7-11, 2010

Table of contents

Introduction
What is a Slow-Fast Switched System ?
Slow-fast systems and Tykhonov's theorem

Main Results

Application and Simulation
Examples

Averaging

Introduction
What is a Slow-Fast Switched System ?

Slow-fast systems and Tykhonov's theorem

Main Results

Application and Simulation Examples

Averaging

Slow-Fast Switched System 1/3

- Hybrid system is a dynamical system described by a combination between discrete and continuous dynamics.

Slow-Fast Switched System 1/3

- Hybrid system is a dynamical system described by a combination between discrete and continuous dynamics.
- Switched system is an hybrid system that can be seen as a continuous system with switching events.

Slow-Fast Switched System 1/3

- Hybrid system is a dynamical system described by a combination between discrete and continuous dynamics.
- Switched system is an hybrid system that can be seen as a continuous system with switching events.
- The switching events are subjected to a switching signal depending on the time, the state or both.

Slow-Fast Switched System 1/3

- Hybrid system is a dynamical system described by a combination between discrete and continuous dynamics.
- Switched system is an hybrid system that can be seen as a continuous system with switching events.
- The switching events are subjected to a switching signal depending on the time, the state or both.
- Switched Slow-Fast System is a system with slow and fast dynamics with a fast switching signal depending on the time.

Slow-Fast Switched System 2/3

- Slow-fast switched system :

$$
\left\{\begin{array}{l}
\epsilon^{2} \frac{d x}{d t}=f_{u}(x, y, \epsilon) \\
\frac{d y}{d t}=g_{u}(x, y, \epsilon), \\
\quad(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{m}, \quad \epsilon \approx=\{0,1\}
\end{array}\right.
$$

- The switching signal $u: \mathbb{R}^{+} \rightarrow U$ is a periodic piecewise constante function.

Slow-Fast Switched System 3/3

- To define u, we suppose given
- a continuous 1-periodic real function $\Theta: \mathbb{R} \rightarrow[0,1]$,
- a positive integer $N \in \mathbb{N}^{*}$,

We define a P-periodic switching signal u over one period $P:=\epsilon N$ (fast switching) by

$$
u(t)=\left\{\begin{array}{lll}
0 & \text { if } & t \in\left[\epsilon i, \epsilon\left(i+\theta_{i}\right)\right) \tag{1}\\
1 & \text { if } & t \in\left[\epsilon\left(i+\theta_{i}\right), \epsilon(i+1)\right)
\end{array}\right.
$$

for $i=0 . . N-1$ and $\theta_{i}=\Theta\left(\frac{i}{N}\right)$.

Slow-Fast Switched System 3/3

- To define u, we suppose given
- a continuous 1-periodic real function $\Theta: \mathbb{R} \rightarrow[0,1]$,
- a positive integer $N \in \mathbb{N}^{*}$,

We define a P-periodic switching signal u over one period $P:=\epsilon N$ (fast switching) by

$$
u(t)=\left\{\begin{array}{lll}
0 & \text { if } & t \in\left[\epsilon i, \epsilon\left(i+\theta_{i}\right)\right) \tag{1}\\
1 & \text { if } & t \in\left[\epsilon\left(i+\theta_{i}\right), \epsilon(i+1)\right)
\end{array}\right.
$$

for $i=0 . . N-1$ and $\theta_{i}=\Theta\left(\frac{i}{N}\right)$.

- Here the switching signal depends only on the time so that the Switched System becomes singularly perturbed and P-periodic on the time t.

Introduction
What is a Slow-Fast Switched System ?
Slow-fast systems and Tykhonov's theorem

Main Results

Application and Simulation Examples

Averaging

Slow-fast systems 1/6

We consider two scales of the time, the slow time t and the fast time $\tau=t / \epsilon^{2}$, the switched system has two limit systems when ϵ tends to 0 ,

- at the slow time t :

$$
\left\{\begin{array} { r r }
{ \epsilon ^ { 2 } \frac { d x } { d t } = } & { f _ { u } (x , y , \epsilon) , } \\
{ \frac { d y } { d t } } & { = g _ { u } (0) = x _ { 0 } } \\
{ \hline (x , y , \epsilon) , } & { y (0) = y _ { 0 } }
\end{array} \longrightarrow \left\{\begin{array}{r}
0=f_{u}(x, y, 0) \\
\frac{d y}{d t}=g_{u}(x, y, 0)
\end{array}\right.\right.
$$

- at the fast time τ :

$$
\left\{\begin{array} { l l }
{ \frac { d x } { d \tau } = } & { f _ { u } (x , y , \epsilon) , } \\
{ \frac { d y } { d \tau } = } & { x (0) = \epsilon _ { 0 } ^ { 2 } } \\
{ g _ { u } (x , y , \epsilon) , } & { y (0) = y _ { 0 } , }
\end{array} \longrightarrow \left\{\begin{array}{l}
\frac{d x}{d \tau}=f_{u}(x, y, 0) \\
\frac{d y}{d \tau}=0
\end{array}\right.\right.
$$

Slow-fast systems 2/6

- x varies quickly and is approximated by the solution of the boundary layer equation

$$
\frac{d x}{d \tau}=f_{u}\left(x, y_{0}, 0\right), \quad x(0)=x_{0}
$$

- The equation $\frac{d x}{d \tau}=f_{u}(x, y, 0)$ is the fast equation.
- Assume that the solution of the boundary layer equation tends to a stationary point $\xi_{u}\left(y_{0}\right)$, solution of $f_{u}\left(x, y_{0}, 0\right)=0$.
- the set of the stationary points of the fast equation is the slow manifold. (set of the roots of the equation $\left.f_{u}(x, y, 0)=0\right)$.

Slow-fast systems 3/6

The solution of the switched system is defined for all $\tau \geq 0$ and tends to a stationary point $\left(\xi_{u}\left(y_{0}\right), y_{0}\right)$. Hence a fast transition brings the solution of system near the slow manifold where a slow motion takes place and is approximated by the solution of the reduced problem

$$
\frac{d y}{d t}=g_{u}\left(\xi_{u}(y), y, 0\right), \quad y(0)=y_{0}
$$

which is the limit system at the slow time t :

$$
\left\{\begin{aligned}
0 & =f_{u}(x, y, 0) \\
\frac{d y}{d t} & =g_{u}(x, y, 0), \quad y(0)=y_{0}
\end{aligned}\right.
$$

Slow-fast systems 4/6

The above description is precised by Tykhonov's theorem,

- H1. For each $u \in\{0,1\}, f_{u}$ and g_{u} are C^{1}-functions.
- H2. For each $u \in\{0,1\}$, there exists an m-dimensional compact manifold \mathcal{L}_{u}, subset of the slow manifold, given as a graph of a continuous function ξ_{u} defined in a compact domain $K_{u} \subset \mathbb{R}^{m}$ and for all $y \in K_{u}, \xi_{u}(y)$ is an isolated root of $f_{u}(x, y, 0)=0$.
- H3. For each $u \in\{0,1\}$ and each $y \in K_{u}$, the point $x=\xi_{u}(y)$ is an exponentially asymptotically stable equilibrium point of the fast equation.

Slow-fast systems 5/6

Remark

- H3 means that, by using implicite function theorem, one can define at least locally the slow manifold as a graph of a continuous function.
- H2 says that one can extend globally this definition of \mathcal{L}_{u} over a compact domain K_{u}.

Slow-fast systems 6/6

Theorem
Under hypothesis H1-H3, let

- $\left(x_{0}, y_{0}\right)$ in the basin of attraction of \mathcal{L}_{u},
- $\varphi(\tau)$ be the solution of the boundary layer equation,
- $\psi(t)$ be the solution of the reduced problem,
- I the positive interval of definition of ψ.

Let $T \in I$ then
$\forall \eta>0, \exists \epsilon_{0}, \forall \epsilon \in\left(0, \epsilon_{0}\right)$, the solution $(x(t), y(t))$ of switched system starting at $\left(x_{0}, y_{0}\right)$ is defined at least on $[0, T]$ and $\exists \Pi>0, \epsilon \Pi<\eta$ and

$$
\begin{cases}\left\|x\left(\epsilon^{2} \tau\right)-\varphi(\tau)\right\|<\eta, & \text { for } \quad 0 \leq \tau \leq \Pi, \\ \|x(t)-\xi(\psi(t))\|<\eta, & \text { for } \quad \epsilon^{2} \Pi \leq t \leq T, \\ \|y(t)-\psi(t)\|<\eta, & \text { for } \quad 0 \leq t \leq T .\end{cases}
$$

Introduction
What is a Slow-Fast Switched System ?
Slow-fast systems and Tykhonov's theorem

Main Results

Application and Simulation
Examples

Averaging

Main Results $1 / 3$

- H4. The slow manifolds \mathcal{L}_{u} for $u \in\{0,1\}$ of the switched system have the same basin of attraction $\mathcal{B}\left(\mathcal{L}_{u}\right)$.
- H4 allows us to define the slow manifolds \mathcal{L}_{u} on the same compact domain K

$$
\mathcal{L}_{u}=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{m} / x=\xi_{u}(y), \forall y \in K\right\}
$$

- Let $N \in \mathbb{N}^{*}$ fixed and $\bar{\Theta}=\sum_{i=0}^{N-1} \theta_{i}$. We define the differential equation

$$
\frac{d \bar{y}}{d t}=G(\bar{y}):=\bar{\Theta} g_{0}\left(\xi_{0}(\bar{y}), \bar{y}, 0\right)+(N-\bar{\Theta}) g_{1}\left(\xi_{1}(\bar{y}), \bar{y}, 0\right)
$$

Main Results 2/3

- Theorem

If there exists an exponentially asymptotically stable equilibrium point $\bar{y}_{0} \in \mathbb{R}^{m}$ of equation

$$
(*) \quad \frac{d \bar{y}}{d t}=G(\bar{y}):=\bar{\Theta} g_{0}\left(\xi_{0}(\bar{y}), \bar{y}, 0\right)+(N-\bar{\Theta}) g_{1}\left(\xi_{1}(\bar{y}), \bar{y}, 0\right)
$$

then $\forall \eta>0, \exists \epsilon_{0}$ such that $\forall \epsilon<\epsilon_{0}$, the switched system admits a P-periodic solution starting at $\left(x^{*}, y^{*}\right)$ such that

$$
\left\{\begin{array}{l}
\left\|x^{*}-\xi_{1}\left(\bar{y}_{0}\right)\right\|<\eta \\
\left\|y^{*}-\bar{y}_{0}\right\|<\eta
\end{array}\right.
$$

- Theorem

If there exists an asymptotically orbitaly stable T-periodic solution of equation (${ }^{*}$) starting at $\bar{y}_{0} \in \mathbb{R}^{m}$, then $\forall \eta>0, \exists \epsilon_{0}$ such that $\forall \epsilon<\epsilon_{0}$ satisfying $\frac{T}{\epsilon N}=L \in \mathbb{N}$, the switched system admits a T-periodic solution starting at $\left(x^{*}, y^{*}\right)$ such that

$$
\left\{\begin{array}{l}
\left\|x^{*}-\xi_{1}\left(\bar{y}_{0}\right)\right\|<\eta \\
\left\|y^{*}-\bar{y}_{0}\right\|<\eta
\end{array}\right.
$$

Main Results $3 / 3$

- We define the differential equation

$$
(* *) \quad \frac{d \bar{y}}{d t}=G(t, \bar{y})
$$

where

$$
G(t, \bar{y})=\Theta(t) g_{0}\left(\xi_{0}(\bar{y}), \bar{y}, 0\right)+(1-\Theta(t)) g_{1}\left(\xi_{1}(\bar{y}), \bar{y}, 0\right)
$$

Main Results 3/3

- We define the differential equation

$$
(* *) \quad \frac{d \bar{y}}{d t}=G(t, \bar{y})
$$

where

$$
G(t, \bar{y})=\Theta(t) g_{0}\left(\xi_{0}(\bar{y}), \bar{y}, 0\right)+(1-\Theta(t)) g_{1}\left(\xi_{1}(\bar{y}), \bar{y}, 0\right)
$$

- Theorem

If there exists an asymptotically stable 1-periodic solution of averaged equation (**) starting at the point $\bar{y}_{0} \in \mathbb{R}^{m}$, then $\forall \eta>0, \exists \epsilon_{0}$ such that $\forall \epsilon<\epsilon_{0}$, the switched system admits a P-periodic solution starting at $\left(x^{*}, y^{*}\right)$ such that

$$
\left\{\begin{array}{l}
\left\|x^{*}-\xi_{1}\left(\bar{y}_{0}\right)\right\|<\eta \\
\left\|y^{*}-\bar{y}_{0}\right\|<\eta
\end{array}\right.
$$

Introduction

What is a Slow-Fast Switched System ?
Slow-fast systems and Tykhonov's theorem

Main Results

Application and Simulation
Examples

Averaging

Exemple 1

- The dynamic of a population of microalgual in a fluctuating environment (J.-M. Guarini, G. Blanchard, P. Gros)

Exemple 1

- The dynamic of a population of microalgual in a fluctuating environment (J.-M. Guarini, G. Blanchard, P. Gros)
- In the positive $1 / 4$-plane $\left\{(x, y) \in \mathbb{R}^{2} / x \geq 0, y \geq 0\right\}$.

$$
\begin{gathered}
\left\{\begin{aligned}
& \epsilon^{2} \frac{d x}{d t}=f_{0}(x, y, \epsilon):=r y(1-x)+\epsilon x[(p-r)(1-x)-\epsilon \mu] \\
& \frac{d y}{d t}=g_{0}(x, y, \epsilon):=p x-\mu y, \\
&\left\{\begin{aligned}
& \epsilon^{2} \frac{d x}{d t}= f_{1}(x, y, \epsilon):= \\
& \frac{d y}{d t}= g_{1}(x, y, \epsilon):= \\
& \hline
\end{aligned}\right)-\mu y .
\end{aligned}\right.
\end{gathered}
$$

u is a P-periodic switching signal defined over one period $P=\epsilon N$ by

$$
u(t)=\left\{\begin{array}{lll}
0 & \text { if } & t \in\left[\epsilon i, \epsilon\left(i+\theta_{i}\right)\right) \tag{2}\\
1 & \text { if } & t \in\left[\epsilon\left(i+\theta_{i}\right), \epsilon(i+1)\right),
\end{array}\right.
$$

where $i=0 . . N-1$ and $0 \leq \theta_{i} \leq 1$.

- Slow manifold \mathcal{L}_{1} is the straight line $x=0$.
- $N=1$, the first theorem implies existence of an ϵ-periodic solution close to $(1, \bar{y})$.
- Averaged equation

$$
\frac{d y}{d t}=G(y):=-\mu y+p \theta_{0}
$$

which admits the equilibrium point $\bar{y}=\frac{p \theta_{0}}{\mu}$.

- $\theta(t)=(2+\sin (2 \pi t)) / 4$, the averaged equation (**) becomes

$$
\frac{d y}{d t}=G(t, y):=-\mu y+p \theta(t)
$$

which admits an asymptotically stable periodic solution

$$
y(t)=\frac{p}{4}\left(\frac{2}{\mu}+\frac{1}{2 \pi+\mu} \sin (2 \pi t)\right)
$$

- If $N=O(1 / \epsilon)$ we can apply the third theorem.

Example 2

Consider in \mathbb{R}^{3} the following switched system

$$
\left\{\begin{align*}
\epsilon^{2} \frac{d x}{d t}=f_{0}(x, u, v, \epsilon) & :=-x-u^{2}+1, \tag{3}\\
\frac{d u}{d t}=g_{0}(x, u, v) & :=v, \\
\frac{d v}{d t}=h_{0}(x, u, v) & :=-u+\gamma x v,
\end{align*}\right.
$$

and

$$
\begin{align*}
& \left\{\begin{aligned}
\epsilon^{2} \frac{d x}{d t}=f_{1}(x, u, v) & :=-x+u+\beta, \\
\frac{d u}{d t}=g_{1}(x, u, v) & :=v, \\
\frac{d v}{d t} & =h_{1}(x, u, v):=\beta-x+\gamma(x+1-\beta)(1-u) v,
\end{aligned}\right. \tag{4}\\
& \gamma>0, \beta>2, \Theta(t)=(2+\sin (2 \pi t)) / 4
\end{align*}
$$

- Slow manifolds

$$
\begin{aligned}
& \mathcal{L}_{0}=\left\{(x, u, v) \in \mathbb{R}^{3}, x=\xi_{0}(u, v):=1-u^{2}\right\} \text { and } \\
& \mathcal{L}_{1}=\left\{(x, u, v) \in \mathbb{R}^{3}, x=\xi_{1}(u, v):=u+\beta\right\}
\end{aligned}
$$

- The reduced corresponding equation

$$
\left\{\begin{array}{l}
\frac{d u}{d t}=v, \quad i=0,1 \tag{5}\\
\frac{d v}{d t}=-u+\gamma\left(1-u^{2}\right) v
\end{array}\right.
$$

that is van der Pol equation which admits, since $\gamma>0$, an asymptotically orbitally stable periodic solution. So we can apply the second theorem.

Introduction

What is a Slow-Fast Switched System ?
Slow-fast systems and Tykhonov's theorem

Main Results

Application and Simulation
Examples

Averaging

Averaging 1/2

- Suppose $N=O(1)$ and let $(x(t), y(t))$ the solution of the switched system starting at time $t_{0}=0$ from $\left(x_{0}, y_{0}\right) \in \mathcal{L}_{1}$ (i.e. $x_{0}=\xi_{1}\left(y_{0}\right)$) and consider the sequence $\left(x_{n}, y_{n}\right), n \in \mathbb{N}$, defined

$$
\left(x_{n}, y_{n}\right)=\left(x\left(t_{n}\right), y\left(t_{n}\right)\right), \text { with } t_{n}=n P
$$

Averaging 1/2

- Suppose $N=O(1)$ and let $(x(t), y(t))$ the solution of the switched system starting at time $t_{0}=0$ from $\left(x_{0}, y_{0}\right) \in \mathcal{L}_{1}$ (i.e. $x_{0}=\xi_{1}\left(y_{0}\right)$) and consider the sequence $\left(x_{n}, y_{n}\right), n \in \mathbb{N}$, defined

$$
\left(x_{n}, y_{n}\right)=\left(x\left(t_{n}\right), y\left(t_{n}\right)\right), \text { with } t_{n}=n P
$$

- Proposition

For each $\eta>0$ there exists ϵ_{0} such that for all $\epsilon<\epsilon_{0}$ the sequence $\left(x_{n}, y_{n}\right)$ verifies

$$
\left\{\begin{array}{l}
\left\|x_{n}-\xi_{1}\left(y_{n}\right)\right\|<\eta \\
\left\|y_{n}-\bar{y}\left(t_{n}\right)\right\|<\eta
\end{array}\right.
$$

where $\bar{y}(t)$ is the solution of

$$
\frac{d \bar{y}}{d t}=G(\bar{y}):=\bar{\Theta} g_{0}\left(\xi_{0}(\bar{y}), \bar{y}, 0\right)+(N-\bar{\Theta}) g_{1}\left(\xi_{1}(\bar{y}), \bar{y}, 0\right)
$$

Averaging 2/2

- Suppose now $N=O(1 / \epsilon)$ and consider the sequence $\left(x_{n}, y_{n}\right), n \in \mathbb{N}$, defined by

$$
\left(x_{n}, y_{n}\right)=\left(x\left(t_{n}\right), y\left(t_{n}\right)\right), \text { with } t_{n}=n \epsilon
$$

Averaging 2/2

- Suppose now $N=O(1 / \epsilon)$ and consider the sequence $\left(x_{n}, y_{n}\right), n \in \mathbb{N}$, defined by

$$
\left(x_{n}, y_{n}\right)=\left(x\left(t_{n}\right), y\left(t_{n}\right)\right), \text { with } t_{n}=n \epsilon
$$

- Proposition

For each $\eta>0$ there exists ϵ_{0} such that for all $\epsilon<\epsilon_{0}$ the sequence $\left(x_{n}, y_{n}\right)$ verifies

$$
\left\{\begin{array}{l}
\left\|x_{n}-\xi_{1}\left(y_{n}\right)\right\|<\eta \\
\left\|y_{n}-\bar{y}\left(t_{n}\right)\right\|<\eta
\end{array}\right.
$$

where $\bar{y}(t)$ is the solution

$$
\frac{d \bar{y}}{d t}=G(t, \bar{y})=\Theta(t) g_{0}\left(\xi_{0}(\bar{y}), \bar{y}, 0\right)+(1-\Theta(t)) g_{1}\left(\xi_{1}(\bar{y}), \bar{y}, 0\right)
$$

starting at $t_{0}=0$ from the point y_{0}.

