

Coadvise + Treasure programmes Specialist Course Tlemcen, 7th - 11th February 2010

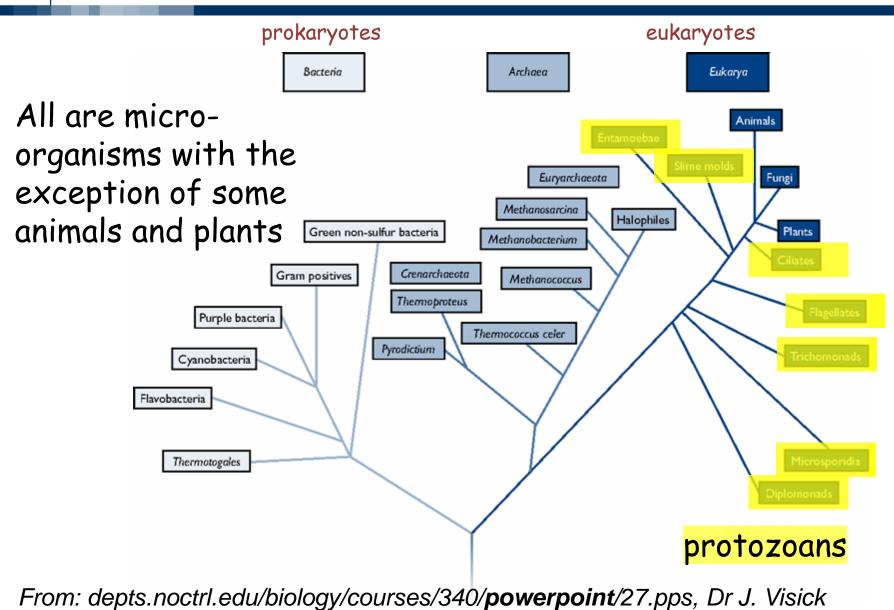
Biomass activity measurements

Part 1 – Microbiology and wastewater characterisation

Roberto Canziani

🤰 General Index (1)

- 1) Fundamentals of Microbiology (short hints)
- 2) Main microbial substrates in wastewater: organic substances and nitrogen compounds
- 3) Bacterial activity assessment techniques
- Respirometry
- Titrimetry
- Manometry
- Calorimetry

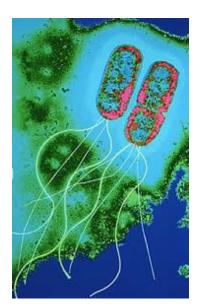


Fundamentals of microbiology

Roberto Canziani

POLITECNICO DI MILANO

Three domains of life


Roberto Canziani

POLITECNICO DI MILANO

Microbiology applied to Environmental Engineering – fundamentals (1)

5

		Capsule (may not be present)		
Algae & Blue Algae	Microorganisms:			
Protozoans	Prokaryotes and	DNA		
Fungi (Yeasts and molds)	some Eukaryotes Single-cell or multicellular organisms without	ribosome cytoplasm		
Prokaryotes (Bacteria & Archaea)		mesosome plasmid flagellum		
(Viruses)	tissue differentiation			

Linear dimensions: 1 – 10 μ m

Some bacteria can protect themselves in a **spore**, very resistant to environmental agents. Others have a protective capsule.

a - COCCi
(spheric shaped)
b - bacilli
(cylindric shaped)
c - spirilla
(spiral shaped)

POLITECNICO DI MILANO

Roberto Canziani

Microbiology applied to Environmental Engineering fundamentals (2)

BACTERIA

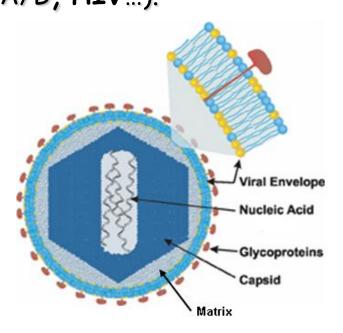
~ 80% is water. Solid mass can be represented by empirical formulas such as: $C_5H_7O_2N$ or $C_{60}H_{87}N_{12}O_{23}P$.

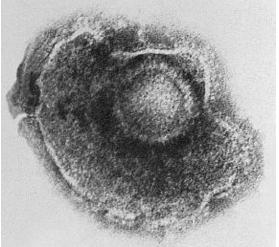
Only soluble compounds can cross their semi-permeable membrane by a passive transfer (osmotic, as for water) or active (mediated by enzymes).

CRITERIUM	CLASSIFICATION			
Origin	faecal		environmental	
Hygiene - based	Pathogens (pathogenic bacteria)		non-pathogenic	
Temperature	psycrophilic (2-20°C)	mesophilic (20-45°C)		thermophilic (45-75°C)

Energetic	photosynthetic (energy from solar radiation)	chemiosinthetic (energy from chemical reactions)		
Trophic	phototrophs	lithotrophs	organotrophs	
Carbon source	autotrophs (inorganic C, i.e.: CO ₂)		heterotrophs (organic C)	

Redox reaction	aerobes (O2 as electron acceptor)	anoxic/anaerobes (a different
		substrate acts as electron acceptor)


Microbiology applied to Environmental Engineering – fundamentals (3)


Roberto Canziani

VIRUSES

Single-cell organisms (0,01 – 0,1 μm), often pathogens and parasites as they live at the expense of a host-organism.

They are made of a viral envelope, a protein capsule (capsid) containing long-chain DNA and/or RNA. In spite of being simpler, more primitive and smaller than bacteria, they are often resistant to disinfection (Enterovirus spp. as Coxsackie and Poliovirus, Haepatitis A/B, HIV...).

Varicella (Chickenpox) virus

POLITECNICO DI MILANO

Microbiology applied to Environmental Engineering – fundamentals (4)

MICROALGAE

photosynthetic single-cell organisms (~ 10 μ m), empirical formula

 $C_5H_8O_2N$ or $C_{106}H_{180}O_{45}N_{16}P$: useful to determine their nutrient requirement:

C:N:P = 106:45:16 (see later: eutrophication)

PROTOZOANS

Single-celled organisms, often cause severe

diseases (es.: Criptosporidium, Plasmodium, Giardia → Amoeba, Leishmania).

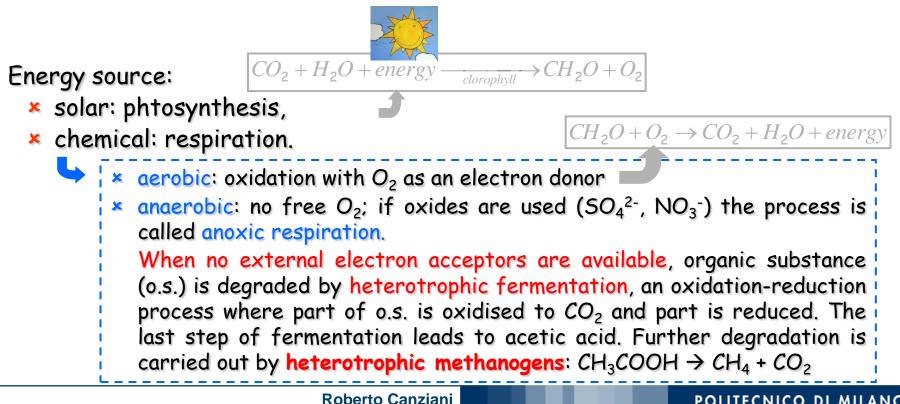
See a complete list on:

http://www.microbiologyprocedure.com/eukaryotes-microbes/list-of-protozoan-diseasesin-human.htm

HELMINTHS (PARASITIC WORMS)

Three Phyla: Plathelminths (classes of Cestodes and Trematodes) and Nematodes, also cause severe **diseases** (e.g.: schistosomiasis) See more on WHO: Controlling disease due to helminth infections (2003) http://www.who.int/wormcontrol/documents/en/Controlling%20Helminths.pdf Atlas of Medical Parasitology: http://www.cdfound.to.it/_atlas.htm

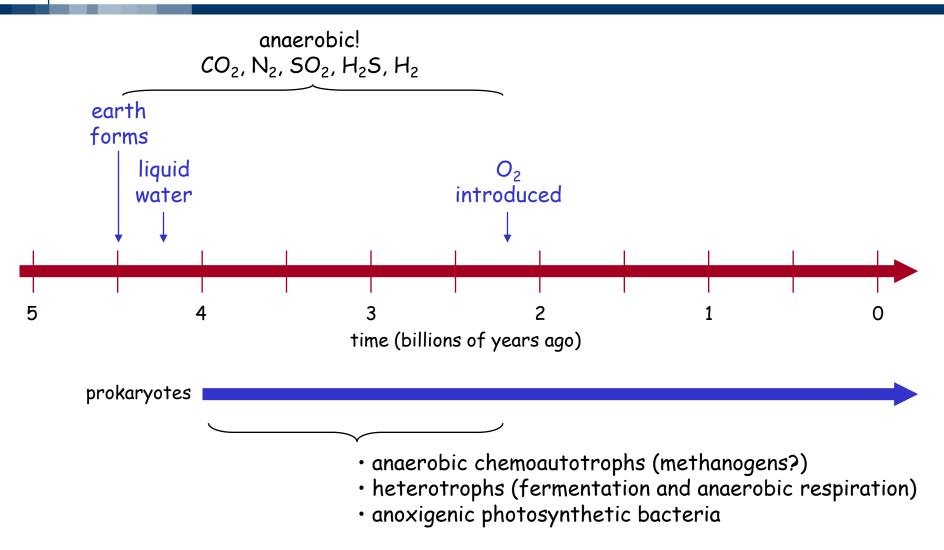
Microbiology applied to Environmental Engineering bacterial metabolism (1)


Metabolism: the chemical changes in living cells by which energy is provided for vital processes and activities and new material is assimilated:

CATABOLISM

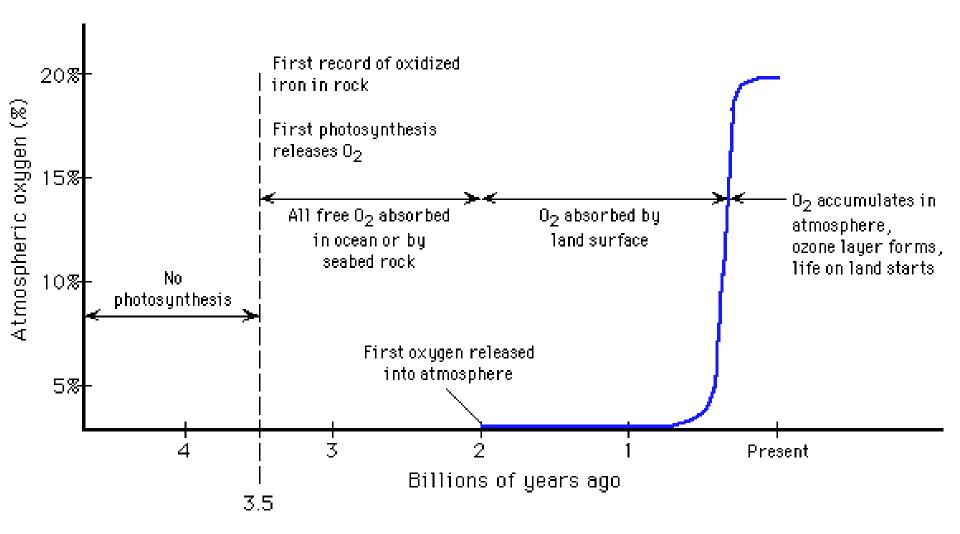
Biochemical reactions that produce energy and stable waste residues.

ANABOLISM


Biochemical reactions that lead to new cell synthesis.

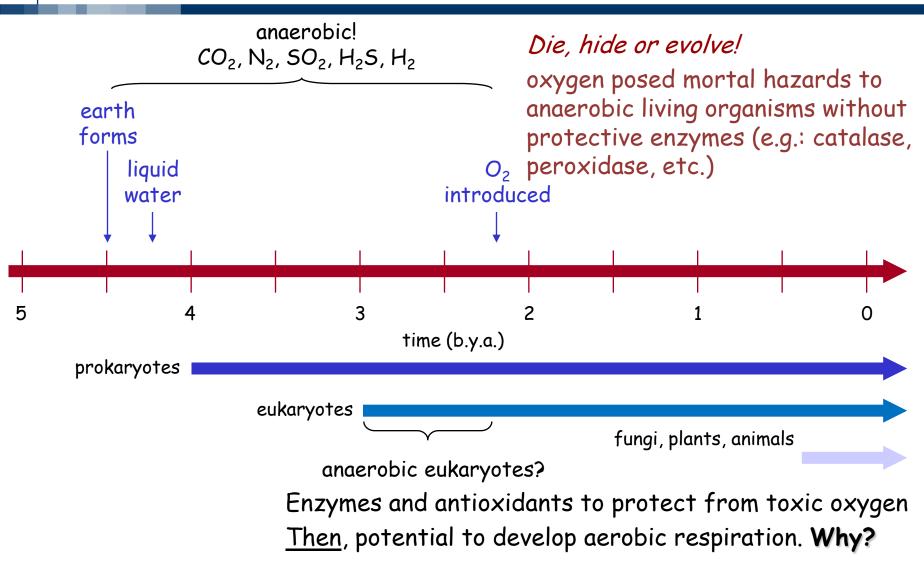
Microbiology applied to Environmental Engineering – bacterial metabolism (2)

AEROBIC AUTOTROPHIC BACTERIA $NH_4^+ + 2O_2 \longrightarrow NO_3^- + H_2O + 2H^+$ oxidation of inorganic compounds with O₂. (e.g.: nitrifiers) $5S + 2H_2O + 6NO_3^- \longrightarrow 5SO_4^{2-} + 3N_2 + 4H^+$ ANOXIC AUTOTROPHIC BACTERIA oxidation of inorganic compounds with combined oxygen (NO_{2⁻}, NO_{3⁻}, SO_{4²⁻}) (e.g.: anoxic S oxidation; methane oxidizers utilize CH_4 as a substrate in conjunction with the reduction of sulfate and nitrate; Anammox bacteria reduce nitrite and oxidize ammonia to N_2 and water: $NH_4^+ + NO_2^- \rightarrow N_2 + 2H_2O$) **ANAEROBIC AUTOTROPHIC BACTERIA** $|CO_2 + 4H_2 \longrightarrow CH_4 + 2H_2O$ oxidation of inorganic compounds without O_2 . (e.g.: autotrophic methanogens) AEROBIC HETEROTROPHIC BACTERIA $C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O$ Organic compounds oxidation with O₂ (e.g.: aerobic heterotrophs). $C_6H_{12}O_6 + 4NO_3^- \longrightarrow 6CO_2 + 2N_2 + 6H_2O$ ANOXIC HETEROTROPHIC BACTERIA Organic compounds oxidation with combined oxygen (NO_{3⁻. SO_4^{2-})} (e.g.: heterotrophic denitrifiers). **ANAEROBIC HETEROTROPHIC BACTERIA** $|C_6H_{12}O_6 \longrightarrow 3CH_4 + 3CO_2|$ Oxidation-reduction of organic compounds (e.g.: heterotrophic methanogens)


Microbiology applied to Environmental Engineering -The Oxygen Revolution (1) 11

From: depts.noctrl.edu/biology/courses/340/powerpoint/13.pps

Roberto Canziani


Microbiology applied to Environmental Engineering – The Oxygen Revolution (2)

From: depts.noctrl.edu/biology/courses/340/powerpoint/13.pps

Roberto Canziani

Microbiology applied to Environmental Engineering -The Oxygen Revolution (3)

From: depts.noctrl.edu/biology/courses/340/powerpoint/13.pps

Roberto Canziani

Microbiology applied to Environmental Engineering – pathogenic bacteria

		QUANTITY
 One of the main sources of pathogens are human and animal faeces. 	Organic matter in soil (humus)	HIGH
	Lake and river sediments	HIGH
	Sewer sediments	VERY HIGH
 In faeces only 1 out of 1 million bacteria is pathogenic 	Animal manure	VERY HIGH
	Human faeces	VERY HIGH
	Sewage sludge	VERY HIGH
	Clean natural surface water	Low
 … but they are ALWAYS present. 	Polluted natural surface water	Medium
	Open air (rural areas)	~ 0
 An ill individual or one who bears pathogens in 	Air emissions from air conditioning	Low
	Air emissions from cooling towers	Medium
higher proportion can	Air emissions from activated sludge plants	Medium
diffuse the illness	Air recycled from confined environment	Low

Microbiology applied to Environmental Engineering -The Oxygen Revolution (4)

What's the advantage of aerobic respiration? Higher energy yield! (more biomass production...)

	electron acceptor		energy yield	
Chemoautotrophy				
Methanogens	CO ₂	-0.38 V	H ₂	57 kcal/mole
Sulfur oxidizers	5	-0.28 V	5	119 kcal/mole
Anaerobic respiration				
Sulfate reducers	SO4 ²⁻	-0.22 V	glucose	22 kcal/mole
Nitrate reducers	NO ₃ -	+0.42 V	glucose	160 kcal/mole
Aerobic respiration				
Aerobes	O ₂	+0.82 V	glucose	248 kcal/mole

From: North Central College Illinois (USA); Course in "Microbiology" Dr J. Visicks http://depts.noctrl.edu/biology/courses/340/**powerpoint**/13.pps

Main microbial substrates in wastewater: organic substances and nitrogen compounds

16

Roberto Canziani

Analytical need: estimate **ALL organic matter** (which is a mixture of many heterogeneous compounds) which is present in a water or wastewater sample.

Their complete degradation to H₂O e CO₂ requires OXYGEN

Methods which measure the oxygen required for organic matter oxidation are: T.O.D. B.O.D. C.O.D.

T.O.C. is a method which measures the organic carbon which is converted into CO_2

BOD – definition and measurement – first order degradation kinetics (1)

The **Biochemical Oxygen Demand** (BOD), estimates the oxygen required for the oxidation of organic matter by the aerobic metabolism of the microbial flora.

BOD(t): BOD as a function of *time*

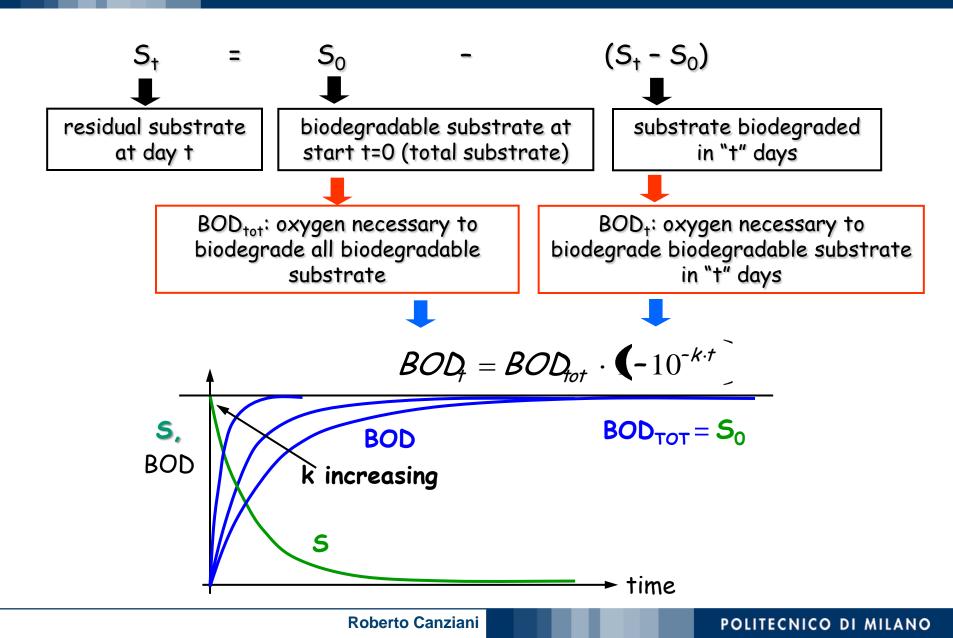
First-order kinetics:
$$\frac{dS}{dt} = -k \cdot S \longrightarrow S_t = S_0 \cdot e^{-k \cdot t} = S_0 \cdot 10^{-k' \cdot t}$$

S, S_t = substrate (org. matter) concentration [mg/L] at time t

k = biodegradation constant [t⁻¹]

k' = 0,43 k

Measurement is performed at 5 (BOD₅) and 20 (BOD₂₀) days (in Norway, BOD₇ is common)


BOD(T): BOD as a function of **Temperature**

Biodegradation gets quicker at increasing temperature; this is shown by the dependence of k with T: k = k(T): $k_T = k_{20} \cdot \theta^{(T-20)}$ ($\theta = 1,04 - 1,06$)

Measurement is performed at 20°C

BOD – definition and measurement – first order degradation kinetics (2)

METHOD

- A sample is preserved in the field at 4°C and the analysis started within 4 hours.
- 2. The sample is incubated until it gets $T = 20^{\circ}C$.
- 3. The sample is aerated to bring the dissolved oxygen content to saturation
- Comparison of the dissolved oxygen content at the beginning and the end of the incubation period is the measure of the BOD (Biochemical Oxygen Demand).

more details at: http://www.ungiwg.org/openwater/?q=node/98

Direct method:

If BOD < 7 mg/L, it is determined directly by measuring the dissolved content of the water sample before and after a five days incubation period at $20^{\circ}C$.

Unseeded dilution method:

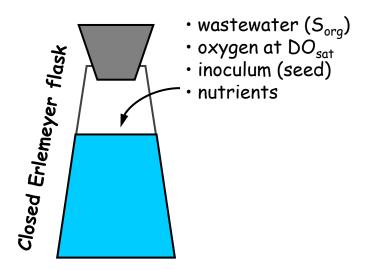
If BOD > 7 mg/L, appropriate sample aliquots are diluted using dilution water, saturated with oxygen, and the oxygen content is determined before and after the incubation period.

A minimum of three dilutions per sample, with a final content between 40% and 70% of the original oxygen concentration, will give best results.

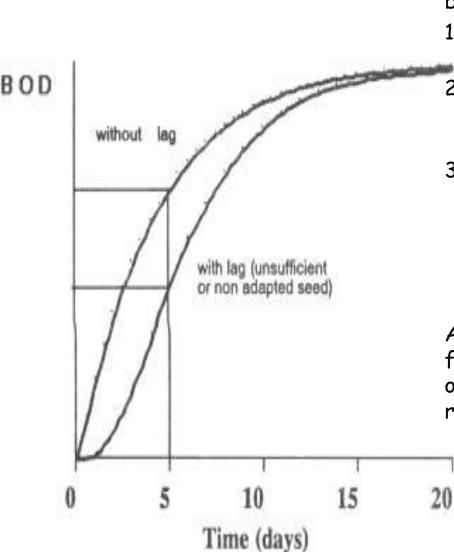
more details at: http://www.ungiwg.org/openwater/?q=node/98

BOD - seeded dilution method (1)

Seeded dilution method:


conditions must be appropriate for the living organisms to function unhindered during the incubation period.

Toxic substances should be absent

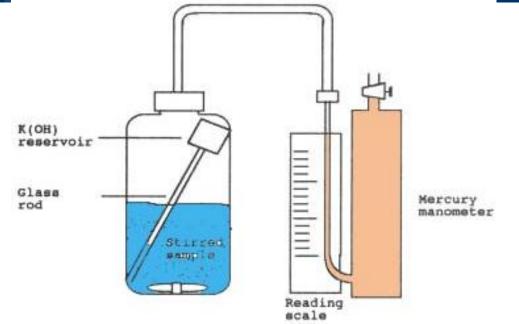

Necessary nutrients, such as N and P, should be present.

It is important that a mixed group of organisms (called "**seed**" or "**inoculum**") be present during the test.

The dilution water is usually seeded with a little quantity (2 - 3 drops in a liter) of activated sludge and saturated with oxygen (overnight) before the BOD test.

BOD - seeded dilution method (2)

Roberto Canziani


Siphon the diluted sample to fill **three** BOD bottles:

- 1. one for incubation and BOD_5 measurement (BOD after five days),
- one for the determination of the dissolved oxygen content (measured and recorded as "initial DO"),
- 3. one for the determination of the immediate dissolved oxygen demand (IDOD), after a 15 minutes incubation period (to eliminate the oxygen demand from sulfide, sulfite and/or ferrous ions).

A minimum of three dilutions per sample, with a final content between 40% and 70% of the original oxygen concentration, will give best results

BOD analysis - manometric method

24

The sample is kept in a sealed container fitted with a pressure sensor. A substance that absorbs carbon dioxide (typically KOH or LiOH) is kept above the sample level.

Oxygen is consumed and carbon dioxide is released, but is absorbed: a pressure drop can be observed, as the total amount of gas decreases.

From the drop of pressure the consumed quantity of oxygen can be derived.

Advantages

simplicity: no dilution of sample required, no seeding, no blank sample

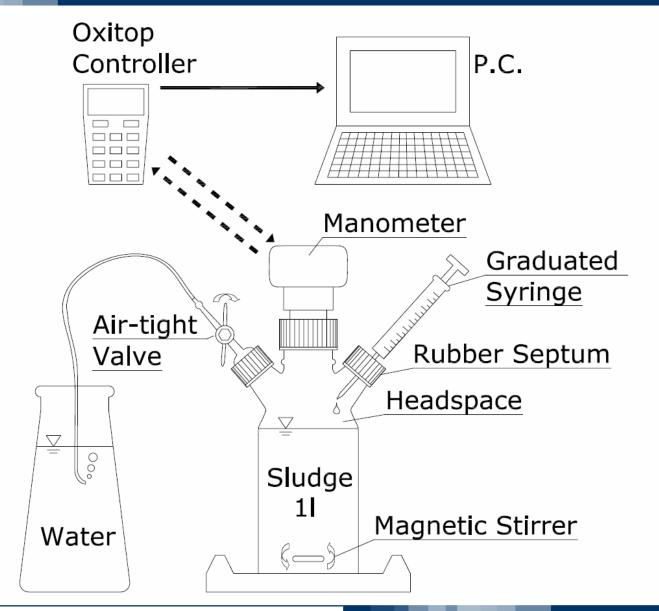
direct reading and continuous display of BOD value (a graph of its evolution can be plotted).

BOD analysis - Warburg respirometer

Transducer connector Pressure transducer Screw top Vessel with alkaline reagent for CO_2 absorption Bottle in amber glass Sample to be analysed Magnetic stirrer

> Bottle equipped with pressuremeasuring head and data logger and transfer device (Oxitop)

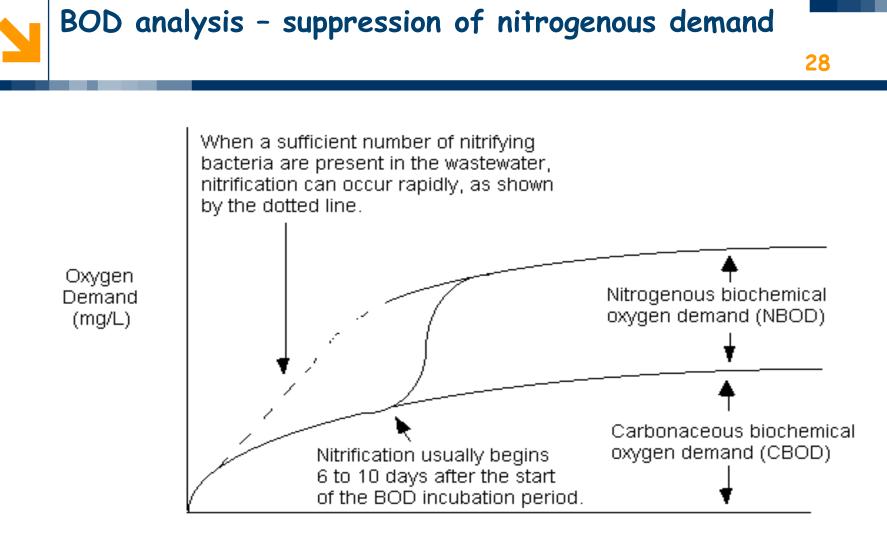
Bottle equipped with pressuremeasuring head



Roberto Canziani

POLITECNICO DI MILANO

26


Roberto Canziani

POLITECNICO DI MILANO

Roberto Canziani

Time (d)

Nitrogenous oxygen demand can be suppressed by adding Allyl-thiourea (ATU)

Roberto Canziani

Chemical Oxygen Demand (COD) is the amount of oxygen in water consumed for chemical oxidation of pollutants.

$$C_n H_a O_b N_c + \left(n + \frac{a}{4} - \frac{b}{2} - \frac{3}{4}c\right) O_2 \rightarrow n CO_2 + \left(\frac{a}{2} - \frac{3}{2}c\right) H_2 O + c N H_3$$

COD can be estimated if org. matter composition is known

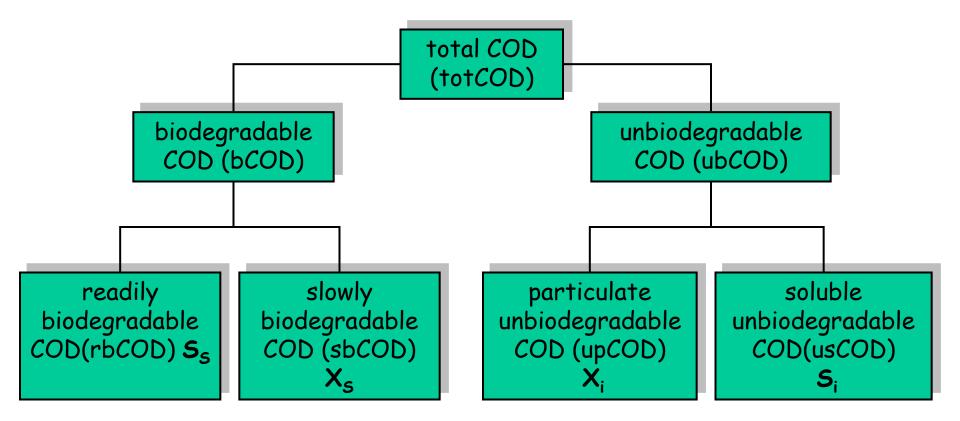
For example, if a sample has 500 ppm of phenol: $C_6H_5OH + 7O_2 \rightarrow 6CO_2 + 3H_2O$ COD = (500/94)(7)(32) = 1191 ppm

In the analytical method potassium dichromate $(K_2Cr_2O_7)$ is used as oxidant and H_2SO_4 is added, boiling for 2h):

$$C_{n}H_{a}O_{b}N_{c} + dCr_{2}O_{7}^{2-} + (8d + c)H^{+} \rightarrow nCO_{2} + \frac{a + 8d - 3c}{2}H_{2}O + cNH_{4}^{+} + 2dCr^{3+}$$

excess $K_2Cr_2O_7$ is titrated with ferrous ammonium sulfate FAS: $(NH_4)_2Fe(SO_4)_2 \cdot 6 H_2O$

until all of the excess oxidizing agent has been reduced to Cr^{3+} .


Ferroin (*) is used as indicator as it changes from blue-green to reddish-brown when all dichromate has been reduced to Cr^{3+} (1 eq O = 1 eq FAS).

(*) Ferroin = C₃₆H₂₄FeN₆O₄S , MW: 692,24

Roberto Canziani

Chemical oxygen demand (COD) – definition and measurement (3) 31

For modelling purposes, total COD in wastewater is divided into the following fractions:

Chemical oxygen demand (COD) – definition and measurement (4)

rbCOD (Readily Biodegradable COD):

It is part of the soluble fraction

- acetate and VFAs,
- glucose and simple sugars,
- ethanol and simple alcohols
- other small molecules

that bacteria assume directly through the cell membrane.

sbCOD (Slowly Biodegradable COD)

any organic compound that can be biodegraded through previous **hydrolysis**, which is carried out by exocellular enzymes.

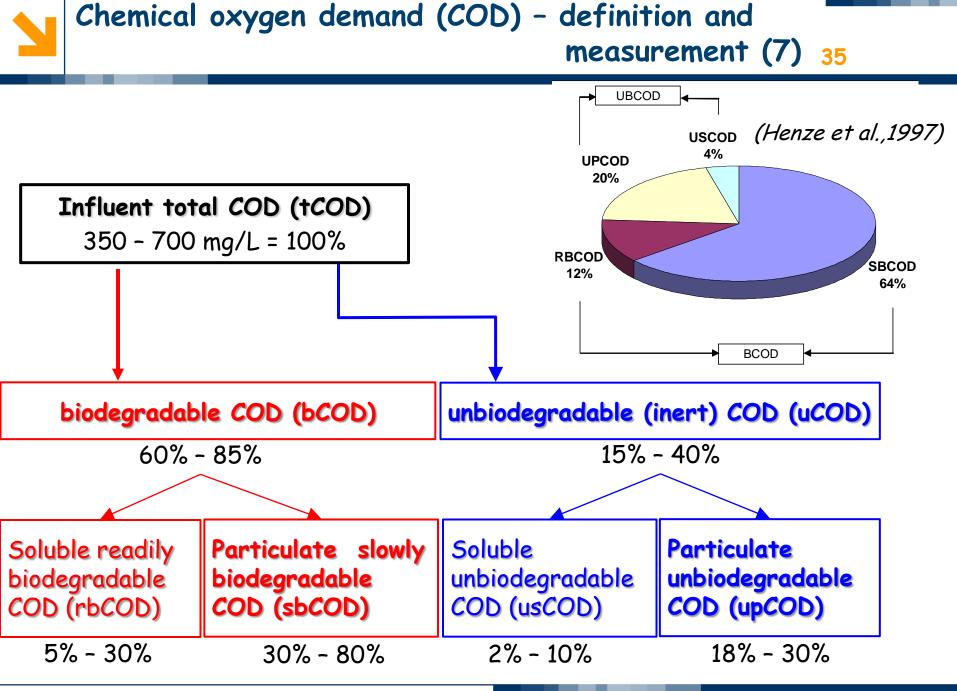
upCOD (Unbiodegradable Particulate COD)

Any substance that is not biodegraded under the operational conditions of the biological system. Removal may occur through bio-flocculation.

usCOD (Unbiodegradable Soluble COD)

It is usually defined as the soluble residual COD after extensive biological treatment.

NOTE: usCOD in the effluent includes usCOD of the influent + unbiodegradable microbial soluble products derived from cell decay.



bCOD = rbCOD + sbCOD \cong BOD₂₀

rbCOD can be estimated as

- 1) the soluble COD after flocculation with $ZnSO_4 \cdot 7H2O$ at pH>11 and filtration on a 0,45-µm membrane(*)
- 2) Respirometric tests
- As a first approximation, usCOD can be estimated as the soluble effluent COD from a conventional AS process with sludge age > 5 days.

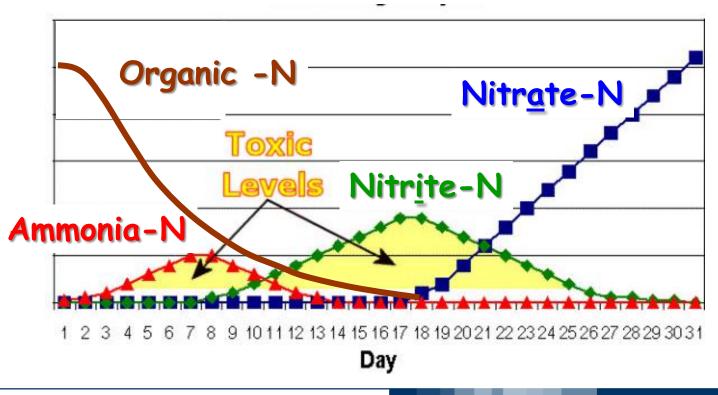
(*)Mamais D., Jenkins D., Pitt P. (1993) A rapid physical-chemical method for the determination of readily biodegradable soluble COD in municipal wastewater, Water Research, 27 (1), 195-197

Roberto Canziani

POLITECNICO DI MILANO

36

Organic nitrogen (N_{org}): is degraded to ammonium N (NH_4^+-N)

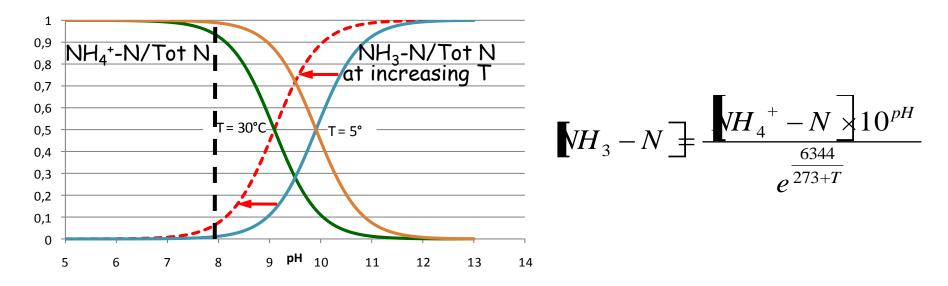

 $proteins \Rightarrow polypeptides \Rightarrow peptones \Rightarrow aminoacids \Rightarrow urea \Rightarrow NH^{+}_{4}$

In wastewater, usual ranges are

Total Kjeldahl Nitrogen = TKN = N_{org} + N-NH⁺₄

a) urine \rightarrow aminoacids + urea (N_{org}) \rightarrow NH⁺₄ -N b) autotrophic nitrifiers **convert** NH⁺₄ to NO⁻₂ and these to NO⁻₃: *Nitrosomonas, Nitrosospira, Nitrosococcus*: NH⁺₄ + 3/2 O₂ \Rightarrow NO⁻₂ + H₂O + 2H⁺ *Nitrobacter, Nitrospira, Nitrococcus*: NO⁻₂ + 1/2 O₂ \Rightarrow NO⁻₃

Roberto Canziani



 NH_4^+ can take days to be converted into NO_3^- .

The following equilibrium holds

$$H^+$$
 + $NH_3 \longrightarrow NH_4^+$

 NH_3 : toxic at 0,1 mg N/L; NH_4^+ : non toxic to fish even at 10 mg/L

If an alkaline discharge occurs, causing pH = 8 in water, toxic effects may occur at T > 20°C

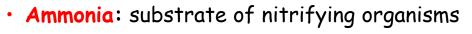
Roberto Canziani

Measuring units:

- Es: 30 mg/L TKN
 - 10 mg/L Ammonia (NH_3 , MW 17)
 - $25 \text{ mg/L} \text{ NO}_3^-$ (MW 62)
 - $2 \text{ mg/L} \text{ NO}_2^-$ (MW 46)

how much is Total Nitrogen?

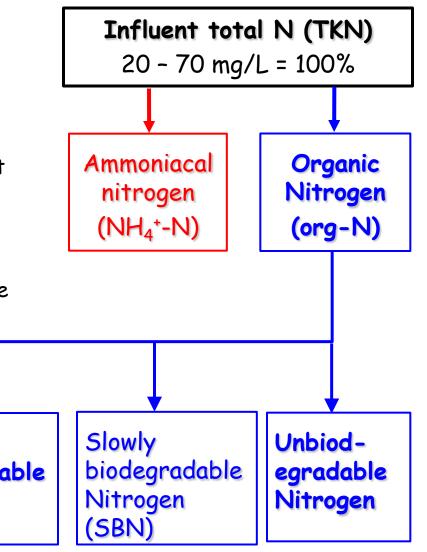
Total-N = 30 + 25 x 14/62 + 2 x 14/46 = 36.25 mg Tot-N/L


as Ammonium-N is included in TKN

Ammonium-N = $10 \times 14/17 = 8.24 \text{ mg N-NH}_4^+/L$

Org-N = 30 - 8.24 = 21.76 mgN/L

Nitrogen compounds (5)


- Org-N: proteins, peptone, amminoacids, urea
- rbN: can be rapidly hydrolyzed into ammonia (S_{ND})
- sbN: azoto organico lentamente biodegradabile (X_{ND}); nitorgn in complex organic compounds that need hydrolysis

 $X_{ND}/S_{ND} \cong$ sbCOD/rbCOD

• **nbN**: non-biodegradable TKN, such as azo-dyes; usually soluble. It can be measured by difference $nbN = (TKN in - NH_4 - N - X_{ND} - S_{ND})$, or as residual soluble TKN in the effluent of a full nitrification process.

> Readily biodegradable Nitrogen (RBN)

Roberto Canziani

The diffusion of models for the description of bioprocesses has lead to the following needs

- Wastewater characterization, as traditional parameters (BOD and COD) were not enough to describe the process adequately.
- 2. Simpler and cheaper methods for the *calibration of stoichiometric and kinetic parameters* of the biomass

In the last decades of the last century new techniques have been developed to fulfil these needs

Bacterial activity assessement (2) 42

Bacterial activity can be evaluated in batch tests by tracking:

- The concentration of a substrate/product by:
 - manual sampling and analysis
 - \checkmark \odot simple and conventional
 - ✓ ③ time consuming
 - using an on-line probe: titrimetry / respirometry
 - \checkmark \odot simple and convenient
 - ✓ ⊗ dependent on probe availability/stability/reliability
 - measuring reaction by-products: manometry (gas production) and calorimetry (heat exchanged)
 - \checkmark \odot simple and convenient
 - \checkmark \odot simple and convenient (on-line data)
 - ✓⊗ dependent on instrument reliability/sensitivity