

Coadvise + Treasure programmes Specialist Course Tlemcen, 7th - 11th February 2010

Biomass activity measurements

Part 2 - Respirometry and Titrimetry

Roberto Canziani

General Index (2)

- 1) Fundamentals of Microbiology (short hints)
- 2) Main microbial substrates in wastewater: organic substances and nitrogen compounds
- 3) Bacterial activity assessment techniques
- Respirometry
- Titrimetry
- Manometry
- Calorimetry

Bacterial activity assessement

Bacterial activity can be evaluated in batch tests by tracking:

- The concentration of a substrate/product by:
 - manual sampling and analysis
 - \checkmark \odot simple and conventional
 - ✓ ③ time consuming
 - using an on-line probe: titrimetry / respirometry
 - \checkmark \odot simple and convenient
 - ✓⊗ dependent on probe availability/stability/reliability
 - measuring reaction by-products: manometry (gas production) and calorimetry (heat exchanged)
 - $\checkmark \odot$ simple and convenient
 - \checkmark \odot simple and convenient (on-line data)
 - ✓⊗ dependent on instrument reliability/sensitivity

RESPIROMETRY

Roberto Canziani

POLITECNICO DI MILANO

Technique that draws information about aerobic biological reactions through the

analysis of the oxygen consumption rate

Under *aerobic conditions*, one of the substrates is dissolved oxygen $(O_2, which acts as electron acceptor)$:

rate, r
$$S_1 + S_2 + ... + S_{n-1} + O_2 \rightarrow P_1 + P_2 + ...P_m + \Delta X$$

reaction rate, *r*, is proportional to consumption rate of oxygen

$$r \propto r_{O_2} = d(O_2)/dt$$

Roberto Canziani

Respirometry can be used to estimate:

1. Biomass growth kinetic and stoichiometric parameters such as:

- $\checkmark\,$ maximum growth rate (µ, d⁻¹)
- \checkmark decay rate (b_h, d⁻¹)
- $\checkmark\,$ half-saturation constant (K_s)
- \checkmark cell yield coefficient (Y)

$$-\frac{dS_{O}}{dt} = \hat{\mu}_{H} \cdot \left(\frac{S_{S}}{S_{S} + k_{S}}\right) \cdot \left(\frac{S_{O}}{S_{O} + k_{OH}}\right) \cdot X_{BH} \cdot \frac{1 - Y_{H}}{Y_{H}} + \hat{\mu}_{A} \cdot \left(\frac{S_{NH}}{S_{NH} + k_{NH}}\right) \cdot \left(\frac{S_{O}}{S_{O} + k_{OA}}\right) \cdot X_{BA} \cdot \frac{4,57 - Y_{A}}{Y_{A}}$$

- 2. Organic substrate characteristics :
 - ✓ Rapidly biodegradable fraction (rbCOD, mg L⁻¹)
 - \checkmark Slowly biodegradable fraction (sbCOD , mg L⁻¹)
 - \checkmark Toxicity and growth inhibition (fraction of μ_{max})

A RESPIROMETER measures oxygen concentration vs time and is capable of deriving the oxygen consumption rate (dO_2/dt) . The output of a respirometer is a RESPIROGRAM

7

POLITECNICO DI MILANO

i.e.: graph of Oxygen Uptake Rate (r_o , or OUR, $mgO_2 L^{-1} h^{-1}$) vs time

Once the concentration of VSS is known, then a specific OUR can be calculated (sOUR, mgO_2 gVSS⁻¹ h⁻¹)

CLOSED RESPIROMETER

batch reactor – neither liquid, nor gaseous flux \rightarrow Oxygen variation is due to biological consumption only

8

Roberto Canziani

OPEN RESPIROMETER

Oxygen is not limiting: periodic aeration starts as O_2 concentration falls below a pre-set limit

7 9 - 8 6.5 6 6 OUR (mg/L/min) DO (mg/L) 5 5.5 3 5 2 4.5 1 4 5 15 25 35 50 0 10 20 30 40 45 time (min)

OUR is determined as the slope during nonaerated periods

Respirometry (6): respirometer and respirograms - OUR analysis (1)

A Lab respirometer:

1: DO recorder; 2: PC; 3: magnetic stirrer; 4: Serum bottle with sample and activated sludge ; 5: DO-meter; 6: aerator (porous stone); 7: air compressor; 8: thermostatic bath

10

raw D.O. measurements: respiration (slopes) and re-aeration

Respirometry (7): respirometer and respirograms - OUR analysis (2)

Example of respirogram: acetate (rbCOD) is added to an activated sludge sample

11

Roberto Canziani

Respirometry (8): respirometer and respirograms - OUR analysis (3)

Roberto Canziani

POLITECNICO DI MILANO

Respirometry (9): rbCOD measurement

1) a wastewater sample is added 2) r_o (OUR) vs time is measured:

3) Oxygen consumed is calculated (dotted area) $\Delta O_2 = \int r_0 dt$

4) rbCOD is calculated by subtracting the fraction used for growth

5) Y_H has been previously calculated with calibration tests, where a known amount of sodium acetate is added, assuming that rbCOD = sodium acetate

$$rbCOD = \frac{\Delta O_2}{\langle \langle -Y_H \rangle}$$

Respirometry (10): slowly biodegradable COD (sbCOD) measurement (1)

Test conditions :

- Biomass concentration: high enough so that r_0 is clearly measurable (0,8-2 gVSS/L)
- F/M (bCOD_{ww}/COD_{biomass}) high enough (0,2-0,4) to ensure at least 2 hours at sustained OUR values
- Nitrification is suppressed by
- ATU addition

Respirometry (11): slowly biodegradable COD (sbCOD) measurement (2)

15

Actual example of an experiment with real sewage

rbCOD is almost absent and sbCOD is made of a mixture of substrates)

Te blue line is an ASM1 simulation of the respirogram : sbCOD and rbCOD have been chosen as the values that give the best fit.

Roberto Canziani

Respirometry (12): maximum growth rate (μ_{max}) and active heterotrophic biomass (X_{bh}) – 1 ₁₆

Only data in the exponential growth phase are considered

Test conditions :

- High F/M (2-4) so that
 S_s>>K_s and X_{bh} growth
 can be observed during
 the experiment
- Nitrification is suppressed by adding ATU

Respirometry (13): maximum growth rate (µ_{max}) and active heterotrophic biomass (X_{bh}) - 2 ₁₇

Actual experimental test with ASM1 interpretation

Respirometry (14): maximum growth rate (µ_{max}) and active heterotrophic biomass (X_{bh}) - 3 ₁₈

As for Oxygen, it can be written

$$r_{o} = \frac{1 - Y_{H}}{Y_{H}} \cdot (\hat{\mu} \cdot \frac{S_{s}}{S_{s} + K_{s}} \cdot \frac{S_{o}}{S_{o} + K_{oH}}) \cdot X_{BH}$$
As $S_{s} \gg K_{s}$, $S_{o} \gg K_{oH}$
 $\frac{S_{s}}{S_{s} + K_{s}} \cong 1$; $\frac{S_{o}}{S_{o} + K_{oH}} \cong 1$
As for biomass, it can be written:
 $r_{X_{BH}} = \frac{dX_{BH}}{dt} = (\hat{\mu} - b) \cdot X_{BH}$
And, integrating:
 $X_{BH} = X_{BH}(0) \cdot e^{(\hat{\mu} - b)t}$
 $r_{O}(t) = r_{O}(0) \cdot e^{(\hat{\mu} - b)t}$

Respirometry (15): maximum growth rate (µ_{max}) and active heterotrophic biomass (X_{bh}) - 4 ₁₉

$$r_{o}(t) = r_{o}(0) \cdot e^{(\hat{\mu} - b) \cdot t}$$

or, in logarithms
$$\ln(r_{o}(t)) = \mathbf{v} - b \cdot t + \ln(r_{o}(0))$$

which is a straight line y = mx + q where: $q = \ln(r_o(0))$ and $m = \hat{\mu} - b$ x = t, $y = \ln(r_o(t))$

Therefore it can be written $e^q = (\frac{1 - Y_H}{Y_H} \hat{\mu}) \cdot X_{BH}(0)$

As Y_H is known and assuming $\hat{\mu} \gg b$, $X_{BH}(0)$ can be estimated $X_{BH}(0) =$ active biomass in the original activated sludge sample

TITRIMETRY

Roberto Canziani

POLITECNICO DI MILANO

A bioreaction to be monitored takes place in a fed-batch reactor.

A sensor measures the concentration of one among Si or Pj (e.g. [Sn]) and a titrator keeps $[S_n]$ constant by addition of an appropriate titrant.

Normally the titration experiment stops when one of the substrates is used up (e.g. S_L)

Roberto Canziani

If $S_n = [H+] \rightarrow pH = constant$

Biomass activity tests with pH-stat titration Generic biological reaction **involving protons**

a) stoichiometry $\Sigma_i(s_iS_i) \rightarrow \Sigma_j(pP_j) + bHCO_3^- + cCO_2 + dCO_3^- + hH^+$

b) reaction rate $r_{p,i}$ can be measured by the titration rate r_t

 $r_{p,i} = d[P_i]/dt \propto r_t = r_t(1) + r_t(2)$

(1) accounts for products formation;

(2) accounts for gas transfer in open systems

Titration curve: volume of titrant added (Vt) vs time

Titration **rate**: $r_t = \frac{dS_n}{dt}$

Roberto Canziani

Application of the pH-DO stat titrator to assess:

- maximum and actual nitrification activity
- detection of the **end of nitrification** during the aeration phase of the SBR cycle
- denitrification activity of SBR sludge

Stoichiometric factor: 2 mol $OH^- = 1 \mod NH_4^+$

* Due to heterotrophic respiration producing CO₂ which absorbs NaOH

POLITECNICO DI MILANO

POLITECNICO DI MILANO

Titrants:

 $(pH_{sp} = 7.4 - 7.9 \text{ for denitrification tests})$

Titrimetry (10) - pH/DO-stat titration for nitrification monitoring - results (1) 30

Real output with freshly sampled activated sludge

Titrimetry (11) - pH/DO-stat titration for nitrification monitoring - results (2) 31

Seasonal monitoring in 5 full-scale WWTPs (activated sludge process)

Roberto Canziani

Titrimetry (12) - pH/DO-stat titration for nitrification monitoring - results (3) 32

Seasonal monitoring in 5 full-scale WWTPs (activated sludge process)

WWTP #1 and 3 have rAOBmax > rNOBmax, i.e.: risk of nitrite build-up

Titrimetry (13) - nitrification activity in an SBR - 1

33

POLITECNICO DI MILANO

Roberto Canziani

Comparison between Lab-Titrator (Martina) and SBR

Comparison between Martina and SBR - ORP

35

Roberto Canziani

36

Comparison between Martina and SBR

Roberto Canziani

POLITECNICO DI MILANO

Titrimetry (17) - nitrification activity in an SBR - 5

38

Heterotrophic denitrification activity tests with **pH-stat titration**

 $PNO_3 + 0.625 CH_3COONa →$ → 0.5 N₂ + 1.25 CO₂ + 0.125 H₂O + 0.625 NaOH + POH

P cation (P⁺) not influencing pH (i.e.: Na⁺)

CH₃COONa as carbon source

HNO3 Titrant

COD-limited reaction NO_3^- not limiting

Denitrification activity tests with acetate

Nitrate 60 mgNO₃-/L (13,5 mg/L as N)

Titrimetry (20) - denitrification activity - 3

Denitrification activity tests with acetate Tests are fully repeatable

Denitrification activity tests with acetate

Run n°	denitrification rate [mgN -NO ₃ /gVSS*h]
1	12,68
2	15,95
3	18,68
4	19,76
5	17,50
6	17,58
7	20,35
8	19,97

Max denitrification rate: 20 mgN-NO₃⁻ $g^{-1}VSS$ h⁻¹

Endogenous rate: $1.12 - 1.94 \text{ mgN-NO}_3^- \text{g}^{-1}\text{VSS} \text{ h}^{-1}$

(biomass grown on synthetic sewage, high % active biomass, low particulate organic debris)

Denitrification activity tests with acetate

Denitrifying activity in SBR increased in the first 4 tests (confirmed by nitrate analysis)

Roberto Canziani

POLITECNICO DI MILANO

Titration MODEs for the assessment of:

- 1. Acute toxicity of autotrophic biomass
- 2. Nitrifiable nitrogen in the influent
- 3. Maximum nitrifying activity
- 4. End of nitrification process (SBR only)
- 5. Residual nitrates at end of anoxic/aerobic phase

Titrimetry (25) - TITAAN - 3

45

Roberto Canziani

POLITECNICO DI MILANO

On-line nitrification activity data validation in SBR:

Production of N-NO₃⁻ during aerobic phase

1) estimated on-line by TITAAN-Mode 1 pHstat and DOstat 2) measured by an-line LIV eenean and validated with lab analysis (UPI () UV sensor DO-stat ∎pH-stat 8.0 25.0% — diff(%) UV-NaOH \rightarrow diff(%) UV-H2O2 7.0 20.0% Nitrate produced (mgN/L) 6.0 15.0% 5.0 10.0% diff(%) 4.0 5.0% 3.0 Ò ₫ 0.0% Q 2.0 Ы 8 Q -5.0% 1.0 Q 0.0 -10.0% 25 Aug 1 Sept 5 Sept 8 Sept 12 Sept 15 Sept 21 Sept Test date satisfactory correspondence: avg. error 8% **Roberto Canziani**

POLITECNICO DI MILANO