

Coadvise + Treasure programmes Specialist Course Tlemcen, 7th - 11th February 2010

Biomass activity measurements

Part 2 – Respirometry and Titrimetry

General Index (2) 2

- **1) Fundamentals of Microbiology (short hints)**
- **2) Main microbial substrates in wastewater: organic substances and nitrogen compounds**
- **3) Bacterial activity assessment techniques**
- **Respirometry**
- Titrimetry
- Manometry
- Calorimetry

Bacterial activity assessement

Bacterial activity can be evaluated in batch tests by tracking:

- The concentration of a substrate/product by:
	- manual sampling and analysis
		- $\sqrt{\circ}$ simple and conventional
		- $\sqrt{\odot}$ time consuming
	- using an on-line probe: titrimetry / respirometry
		- $\sqrt{\circ}$ simple and convenient
		- $\sqrt{8}$ dependent on probe availability/stability/reliability
	- measuring reaction by-products: manometry (gas production) and calorimetry (heat exchanged)
		- $\sqrt{\omega}$ simple and convenient
		- $\sqrt{2}$ simple and convenient (on-line data)
		- $\sqrt{\circ}$ dependent on instrument reliability/sensitivity

RESPIROMETRY

Roberto Canziani

POLITECNICO DI MILANO

Technique that draws information about aerobic biological reactions through the

analysis of the oxygen consumption rate Substrates

Applicable to aerobic microbes (both autotrophs and heterotrophs) S₂ Sn P1 $Pm \longrightarrow P2$ New biomass Δ X Bacterial biomass Reports

Under **aerobic conditions**, one of the substrates is dissolved oxygen (O $_{2}$, which acts as electron acceptor) :

rate, r
\n
$$
S_1 + S_2 + ... + S_{n-1} + O_2 \rightarrow P_1 + P_2 + ... P_m + \Delta X
$$

\nreaction rate, r, is proportional to consumption rate of oxygen:

$$
r \propto r_{O_2} = d(O_2)/dt
$$

Roberto Canziani

Respirometry can be used to estimate:

1. Biomass growth kinetic and stoichiometric parameters such as:

- \checkmark maximum growth rate (μ , d⁻¹)
- \checkmark decay rate (b_h, d⁻¹)
- \checkmark half-saturation constant (K_s)
- \checkmark cell yield coefficient (Y)

$$
\begin{array}{ll}\n\sqrt{\text{half-saturation constant (K_s)}}\\
\sqrt{\text{cell yield coefficient (V)}}\\
-\frac{dS_0}{dt} = \hat{\mu}_H \cdot \left(\frac{S_S}{S_S + k_S}\right) \cdot \left(\frac{S_0}{S_O + k_{OH}}\right) \cdot X_{BH} \cdot \frac{1 - Y_H}{Y_H} + \hat{\mu}_A \cdot \left(\frac{S_{NH}}{S_{NH} + k_{NH}}\right) \cdot \left(\frac{S_0}{S_O + k_{OA}}\right) \cdot X_{BA} \cdot \frac{4.57 - Y_A}{Y_A}\n\end{array}
$$

- **2. Organic substrate characteristics :**
	- \checkmark Rapidly biodegradable fraction (rbCOD, mg L-1)
	- \checkmark Slowly biodegradable fraction (sbCOD, mg L⁻¹)
	- \checkmark Toxicity and growth inhibition (fraction of μ_{max})

A RESPIROMETER measures oxygen concentration vs time and is capable of deriving the oxygen consumption rate $(dO₂/dt)$. The output of a respirometer is a **RESPIROGRAM**

i.e.: graph of Oxygen Uptake Rate (r_o , or OUR, mgO $_2$ L $^{\text{-}1}$ h $^{\text{-}1})$ vs time

Once the concentration of VSS is known, then a specific OUR can be calculated (sOUR, mgO_2 gVSS⁻¹ h⁻¹)

A respirometer is made of:

CLOSED RESPIROMETER

batch reactor - neither liquid, nor gaseous flux \rightarrow Oxygen variation is due to biological consumption only

POLITECNICO DI MILANO

Roberto Canziani

OPEN RESPIROMETER

Oxygen is not limiting: periodic aeration starts as $O₂$ concentration falls below a pre-set limit

 $\overline{7}$ 9 8 6.5 6 OUR (mg/L/min) Do (mg/L) 5 5.5 $\overline{3}$ 5 $\overline{2}$ 4.5 \blacktriangleleft 4 5 10 15 25 35 45 50 0 20 30 40 time (min)

OUR is determined as the slope during nonaerated periods

Respirometry (6): respirometer and respirograms - OUR analysis (1)

A Lab respirometer:

1: DO recorder; 2: PC; 3: magnetic stirrer; 4: Serum bottle with sample and activated sludge ; 5: DO-meter; 6: aerator (porous stone); 7: air compressor; 8: thermostatic bath

10

raw D.O. measurements: **respiration** (slopes) and re-aeration

Respirometry (7): respirometer and respirograms - OUR analysis (2)

Example of respirogram: acetate (rbCOD) is added to an activated sludge sample

POLITECNICO DI MILANO

Respirometry (8): respirometer and respirograms - OUR analysis (3)

POLITECNICO DI MILANO

Respirometry (9): rbCOD measurement

1) a wastewater sample is added 2) r_o (OUR) vs time is measured:

3) Oxygen consumed is calculated (dotted area) $\Delta O_2 = \int r_{o} dt$

4) rbCOD is calculated by subtracting the fraction used for growth

Roberto Canziani 5) Y_H has been previously calculated with calibration tests, where a known amount of sodium acetate is added, assuming that rbCOD = sodium acetate

$$
rb COD = \frac{\Delta O_2}{\blacklozenge - Y_H}
$$

Respirometry (10): slowly biodegradable COD (sbCOD) measurement (1)

Test conditions :

- Biomass concentration: high enough so that r_O is clearly measurable (0,8-2 gVSS/L)
- \cdot F/M (bCOD_{ww}/COD_{biomass}) high enough (0,2-0,4) to ensure at least 2 hours at sustained OUR values
- Nitrification is suppressed by
- ATU addition

Respirometry (11): slowly biodegradable COD (sbCOD) measurement (2)

15

Actual example of an experiment with real sewage

rbCOD is almost absent and sbCOD is made of a mixture of substrates)

Te blue line is an ASM1 simulation of the respirogram : sbCOD and rbCOD have been chosen as the values that give the best fit. 11
1 ה יי
16
1 *1*

16 heterotrophic biomass (Xbh) - 1Respirometry (12): maximum growth rate (μ_{max} **) and active**

Only data in the exponential growth phase are considered Test conditions :

- High F/M (2-4) so that S_s>>K_S and $\mathsf{X_{bh}}$ growth can be observed during the experiment
- Nitrification is suppressed by adding ATU

17 heterotrophic biomass (Xbh) - 2 Respirometry (13): maximum growth rate (μ_{max} **) and active**

Actual experimental test with ASM1 interpretation

18 heterotrophic biomass (Xbh) - 3 Respirometry (14): maximum growth rate (μ_{max}) and active

 $\begin{aligned} \mathcal{L} & = I \ \mathcal{L} & \mathcal{L} & \mathcal{L} \mathcal{L} & \mathcal{L} & \mathcal{L} \mathcal{L} & \mathcal{L} & \mathcal{L} \end{aligned}$
 $\begin{aligned} \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \end{aligned}$

Roberto Canziani S_{Ω} + K *S 1;* S_{S} + K *S* $As S_S >> K_S, S_O >> K_{OH}$ $\overline{) \cdot X}$ S_{Ω} + K *S* S_{S} + K *S (ˆ Y 1 Y* $r_{\hat{O}} = \frac{1}{\sum_{V}} \cdot (\hat{\mu} \cdot \frac{S_{S}}{S_{V}} \cdot \frac{S_{O}}{S_{V}} \cdot \frac{S_{O}}{S_{V}}) \cdot X_{BH}$ $O^{\textstyle{\cdot} \top \textstyle{\cdot} \textstyle{\cdot} \textstyle{\cdot}}$ *OH O* S ^T Λ _{*S*} *S* $O \perp$ ^T O *H O* S \top **Is** *S H H O BH H H* $\hat{\mu}$ *O* = $\frac{1-I_H}{V}$ · $\hat{\mu}$ · X *Y Y* $r_{\scriptscriptstyle O} = \frac{1 - I_H}{I} \cdot \hat{\mu}$ 1 *BH BH* $\hat{X}_{BH} = \frac{aA}{L}$ $\hat{B}H = (\hat{\mu} - b) \cdot X$ *dt dX r B H* $b)$ $\cdot t$ $r_o(t) = r_o(0) \cdot e^{(t_i - b)}$ As for Oxygen, it can be written As for biomass, it can be written: $X_{\,BH} = X_{\,BH} (0) \!\cdot\! e^{(\, \hat{\mu} - b \,) t}$ And, integrating:

19 heterotrophic biomass (Xbh) - 4 Respirometry (15): maximum growth rate (μ_{max}) and active

$$
r_o(t) = r_o(0) \cdot e^{(\hat{\mu} - b) \cdot t}
$$

or, in logarithms $\ln(r_o(t)) = \hat{\mathbf{u}} - b \cdot t + \ln(r_o(0))$

$q = \ln(r_o(0))$ and $m = \hat{\mu} - b$ $x = t$, $y = \ln(r_o(t))$ which is a straight line $y = mx + q$ where:

X (0) Y 1 Y $e^q = (\frac{\cdot}{\cdot} \frac{\cdot}{\cdot} H \hat{\mu}) \cdot X_{BH}$ *H* Therefore it can be written $e^q = (\frac{I - I_H}{I} \hat{\mu})$

As Y_H is known and assuming $\hat{\mu}$ >> b, $X_{BH}(0)$ can be estimated $X_{BH}(0)$ = active biomass in the original activated sludge sample

TITRIMETRY

Roberto Canziani

POLITECNICO DI MILANO

A bioreaction to be monitored takes place in a fed-batch reactor.

A sensor measures the concentration of one among Si or Pj (e.g. [Sn]) and a titrator keeps [S $_{\sf n}$] constant by $\;$ addition of an appropriate titrant.

Normally the titration experiment stops when one of the substrates is used up (e.g. S_L)

If $S_n = [H+] \rightarrow pH = constant$

Biomass activity tests with pH-stat titration Generic biological reaction **involving protons**

a) stoichiometry $\Gamma_{\rm i}({\rm s}_{\rm i}{\rm S}_{\rm i})$ \rightarrow $\Sigma_{\rm j}({\rm pP}_{\rm j})$ + bHCO₃⁻ + cCO₂ + dCO₃⁼ + hH⁺

b) reaction rate $r_{p,i}$ can be measured by the titration rate r_t

 $r_{p,i} = d[P_i]/dt \propto r_i = r_i(1) + r_i(2)$

(1) accounts for products formation;

(2) accounts for gas transfer in open systems

Titration **curve**: volume of titrant added (Vt) vs time

Titration **rate**: *dt dS* $r_{\rm t} = \frac{dV_{\rm n}}{dt}$ *t*

Roberto Canziani

Application of the pH-DO stat titrator to assess:

- maximum and actual **nitrification activity**
- detection of the **end of nitrification** during the aeration phase of the SBR cycle
- **denitrification activity** of SBR sludge

Stoichiometric factor: 2 mol OH $^{-}$ = 1 mol NH₄⁺

* Due to heterotrophic respiration producing $CO₂$ which absorbs NaOH

Roberto Canziani

Time (min)

Roberto Canziani

Roberto Canziani

Titrants:

-NaOH 0.05 M -H2O² 0.1 - 0.3 M -HNO³ 0.05 M

Set-point values:
-
$$
DO_{sp} = 8
$$
 mg/L
- $pH_{sp} = 8.3$ for nitrification tests

(pH_{sp} = 7.4 - 7.9 for denitrification tests)

30 Titrimetry (10) - pH/DO-stat titration for nitrification monitoring – results (1)

Real output with freshly sampled activated sludge

31 Titrimetry (11) - pH/DO-stat titration for nitrification monitoring – results (2)

Seasonal monitoring in 5 full-scale WWTPs (activated sludge process)

32 Titrimetry (12) - pH/DO-stat titration for nitrification monitoring – results (3)

Seasonal monitoring in 5 full-scale WWTPs (activated sludge process)

WWTP #1 and 3 have rAOBmax > rNOBmax, i.e.: risk of nitrite build-up

Titrimetry (13) - nitrification activity in an SBR - 1

33

POLITECNICO DI MILANO

34

Comparison between Lab-Titrator (Martina) and SBR

Comparison between Martina and SBR - ORP

35

36

Comparison between Martina and SBR

Roberto Canziani

Titrimetry (17) - nitrification activity in an SBR - 5

38

Heterotrophic denitrification activity tests with **pH-stat titration**

 $PNO_3 + 0.625$ $CH_3COONa \rightarrow$ \rightarrow 0.5 N₂ + 1.25 CO₂ + 0.125 H₂O + 0.625 NaOH + POH

 P cation (P+) not influencing pH (i.e.: Na+)

 $CH₃COONa$ as carbon source

HNO3 Titrant

COD-limited reaction $\mathsf{NO_3}$ - not limiting

Denitrification activity tests with acetate

Nitrate 60 mgNO₃⁻/L (13,5 mg/L as N)

Titrimetry (20) - denitrification activity - 3

Tests are fully repeatable Denitrification activity tests with acetate

Denitrification activity tests with acetate

Max denitrification rate: 20 mgN-NO $_3$ ⁻ g⁻¹VSS h⁻¹

Endogenous rate: 1.12 – 1.94 mgN-NO₃⁻g⁻¹VSS h⁻¹

(biomass grown on synthetic sewage, high % active biomass, low particulate organic debris)

Denitrification activity tests with acetate

Denitrifying activity in SBR increased in the first 4 tests (confirmed by nitrate analysis)

Roberto Canziani

POLITECNICO DI MILANO

Roberto Canziani

POLITECNICO DI MILANO

Titration MODEs for the assessment of:

- 1. Acute toxicity of autotrophic biomass
- 2. Nitrifiable nitrogen in the influent
- 3. Maximum nitrifying activity
- 4. End of nitrification process (SBR only)
- 5. Residual nitrates at end of anoxic/aerobic phase

Titrimetry (25) – TITAAN – 3

File in analisi C:\Archivio\Installazioni\2008 Titaan ImolaSanterno\Dati\T1_20090108_115121\T1_20090108_115121.xls Dati. . Intervalli [mm:ss]. \Box end. iniziale ٠tD. Attività nitrificante. **V**tATU $\boxed{\mathbf{v}}$ end. finale Volume Fango [L] 1.2 14:03 16:33 36:47 45:31 71:06 40 3.47 Onc. Fango gSSV/L 0.10021 Titolo NaOH [mmol/mL] 2.5 **NITRIF** T_{ATU} $\begin{array}{r} \mathrm{endog} \frac{1}{r_\mathrm{N}^2} \ \begin{array}{r} \mathrm{endog} \ \frac{1}{r_\mathrm{N}^2} \end{array}$ 0.34965 Titolo H2O2 [mmol/mL] т. r_{NaOH}^2 =0.99425 ⇒ Elettrovalvola EV1 NaOH r_{H202}^{2000} = 0.98816 H₂O₂ Elettrovalvola EV 2 □ T.Rif.=T.Media [°C] 13.2 $\overline{2}$ Vol. Inoculo [mL] Calcola (x) Modifica A $1.5¹$ Gin. EndogINI Nitrif EndogFIN $[min]$ $\overline{+}$ NaOH 29.65 6.14 42 i.c.95% 0.01% 0.02% $\mathbf{1}$ H₂O₂ 24.69 11.05 42 i.c.95% 0.01% 0.02% 3 Attività. mgN / mgN / Errore $(L[*]h)$ (gSSV*h) **AOB** NaOH[mmol] 0.98% 8.2 2.4 0.5 **NOB** O2[mmol] AOB_NOB 0.96% $\overline{0}$ 10 20 $30₂$ 40 50 60 70 Ō. 80 t [min] D durata [mm:ss] 75:00

POLITECNICO DI MILANO

45

On-line nitrification activity data validation in SBR:

Production of N-NO $_3^{\text{-}}$ during aerobic phase

