

L'Institut National de la Recherche Agronomique

BIOTECHNOLOGIES POUR LE TRAITEMENT DE L'EAU ET DES DECHETS 6-10 juin 2011, Narbonne

Méthanisation

Romain Cresson INRA Transfert Environnement UR50, Laboratoire de Biotechnologie de l'Environnement Avenue des Etangs, Narbonne, F-11100, France Tel: +33 (0)4 68 42 51 51 (direct: 63) - fax: +33 (0)4 68 42 51 60 http://www.montpellier.inra.fr/narbonne cresson@supagro.inra.fr

Plan

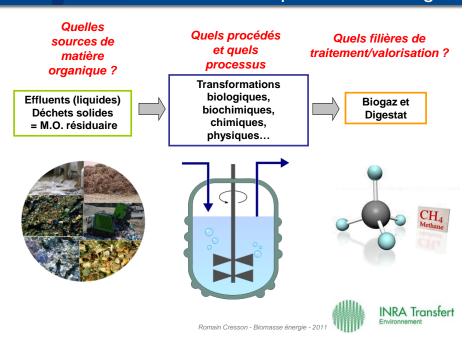
La Méthanisation

- Définition
- Contexte
- Débouchés

Problématique et enjeux

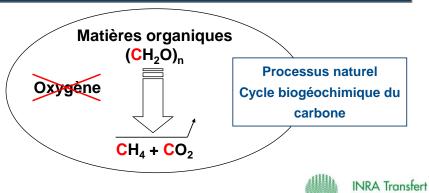
- Traitement des effluents
- · Traitement des déchets
- · Place de la méthanisation

Processus biologique


- Schéma réactionnel
- · Potentiel méthanogène et ordres de grandeur

Les procédés

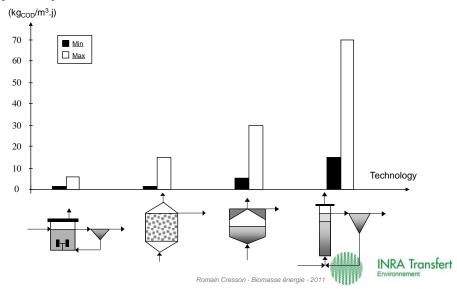
- Types, Performances, dimensionnement et contrôles
- Valorisation des sous-produits
- Données économiques
- Exemples d'applications

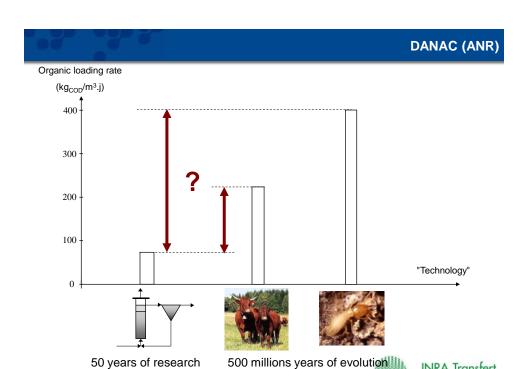

Comment produire du biogaz

La méthanisation ou digestion anaérobie

Définition

Dégradation des matières organiques, en absence d'oxygène, par une communauté microbienne produisant du méthane et du dioxyde de carbone

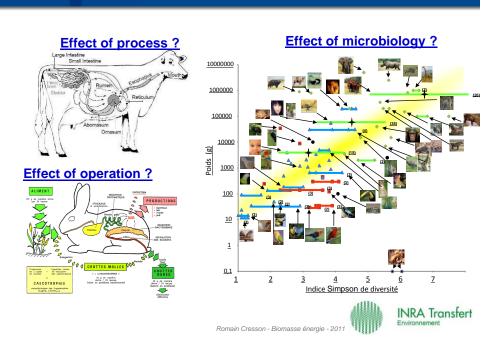

La méthanisation ou digestion anaérobie



DANAC (ANR)

Performance of AD processes is related to the treated waste(water) and process design

Organic loading rate

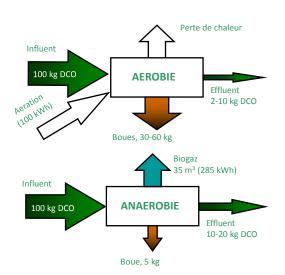


Romain Cresson - Biomasse énergie - 2011

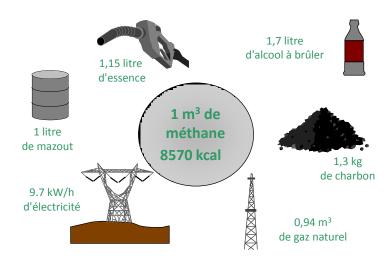
DANAC (ANR)

INRA Transfert

La méthanisation ou digestion anaérobie


Domaine d'application

Traitement des effluents liquides & Déchets solides



Digestion anaérobie et dépollution

+ de 1 % de l'électricité mondiale sert à traiter la pollution humaine

Digestion anaérobie et production d'énergie

Pourquoi la filière anaérobie ?

	Mise en décharge	Incinération	Epandage	Compostage	Méthanisation
Acceptabilité sociale et image	8	88	8	<u></u>	© ©
Gestion de la matière organique	8	88	\odot	© ©	© ©
Effet sanitaire	<u></u>	00	<u></u>	©	© ©
Production d'énergie	\odot	00	88	88	© ©
Coûts	©	88	00	©	⊗

Compostage: - 30-35 kWh par tonne de déchet 😌

Digestion anaérobie: + 100-150 kWh par tonne de déchet

Analyse multicritère :		ER Urbaines		ER Industrielles	
aérob	ie vs anaérobie (Fdz-Polanco 2005)	Aérobie	Anaérobie	Aérobie	Anaérob
	Production des boues	-	++	-	+++
Environnementaux	Surface utilisée	+	-	-	++
	Émission de CO ₂	+	-	-	+
	Énergie consommée / Volume ER traité	+	-	-	+
Énergétiques	Énergie consommée / DCO dégradée	+	-	-	+
	Volume biogaz produit / volume ER traité	-	+	-	++
	Coûts variables	-	+	-	+
Économiques	Coût à l'investissement	-	+	-	++
Economiques	Coût du traitement	-	+	-	+
	Valeur ajoutée	-	+		
Sociaux	Emplois directs	++	-	=	=
Traitement des	effluents industriels				
 ➢ Faible production de biomasse (boues) ➢ Pas de dépense liée à l'oxygénation ➢ Sous produit valorisable (Méthane + Digestat stabilisé → compost) 					

La méthanisation ou digestion anaérobie

Le méthanisation permet :

- √ Traiter des déchets organiques
- √ Produire une énergie renouvelable
- √ Réduire les impacts sur l'environnement
 - · Réduction des émissions de gaz à effet de serre
 - · Réduction des nuisances et odeurs
 - Restitution de matière organique aux sols

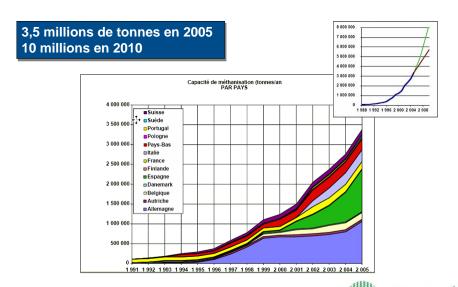
Plan

La Méthanisation

- Définition
- Contexte
- Déhouchés
- Problématique et enieux
 - · Traitement des eaux résiduaires
 - · Traitement des résidus solides
 - Place de la méthanisation

Processus biologique

- Schéma réactionnel
- Potentiel méthanogène et ordres de grandeur


Les procédés

- Types, Performances, dimensionnement et contrôles
- Valorisation des sous-produits
- Données économiques
- Exemples d'applications
 Romain Cresson Biomasse énergie 2011

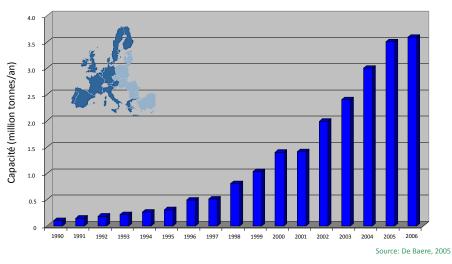
IN En

La méthanisation en Europe

Potentiel de production de biogaz en Europe

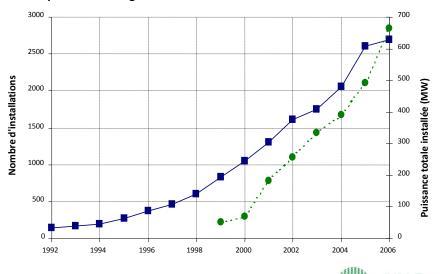
à l'horizon 2020 (en milliers de tep)

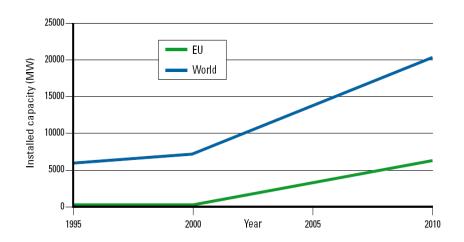
Pays	Potentiel
France	3 682
Allemagne	3 419
Grande-Bretagne	2 271
Italie	1 626
Espagne	1 578
Pays-Bas	1 172
Irlande	1 028
Belgique	765
Danemark	765
Autriche	526
Suède	383
Portugal	311
Finlande	263
Grèce	167
Luxembourg	31
TOTAL	17 987


INRA Transfert

Bomoin Crosson Biomosos ánorgio 2011

A l'échelle des effluents industriels


A l'échelle des déchets urbains



A l'échelle des résidus agricoles

L'exemple de l'Allemagne

Une forte croissance

Sources

1.http://europa.eu.int/comm/energy_transport/atlas/htmlu/as.html - 'Biogas Market Undeveloped', 2003. 2. Report on the European biogas market. Renewable Energy World, May-June 2003, p. 37.

Romain Cresson - Biomasse énergie - 2011

22

Une forte croissance

De la capacité installée (Europe)

1991 à 1995 : +33 000 t/an **1996 à 2000 :** +186 000 t/an

2001 à 2005 : + 428 000 t/an entre 2001 et 2005

De la capacité moyenne des installations

1991 à 1995 : 13 000 t/an 1996 à 2000 : 21 000 t/an 2001 à 2005 : 42 800 t/an

Plan

La Méthanisation

- Définition
- Contexte

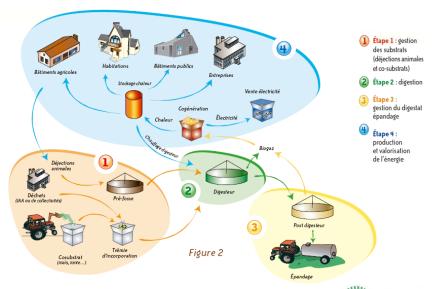
Débouchés

Problématique et enjeux

- Traitement des eaux résiduaires
- · Traitement des résidus solides
- · Place de la méthanisation

Processus biologique

- Schéma réactionnel
- · Potentiel méthanogène et ordres de grandeur


Les procédés

- Types, Performances, dimensionnement et contrôles
- · Valorisation des sous-produits
- · Données économiques
- Exemples d'applications

Filière méthanisation à l'échelle territoriale

Les principales étapes de la méthanisation (source : ADEME

L'exemple de la Scandinavie

Snertige, Danemark

L'exemple de la Scandinavie

AGRIGAS à Lund, Suède

Business Region Göteborg (Ouest de la Suède, 2006)

3800 véhicules

23 stations biogaz

7 unités de production (12 500 tep)

Réduction GES: 35 000 tonnes CO2

L'exemple de la Scandinavie

Business Region Göteborg (Ouest de la Suède, 2006)

Coût de production du biogaz e	n Suède
Procédé	€/kWh
Boues d'épuration	0,034
Déchets ménagers, abattoirs	0,045
Cultures énergétiques	0,049

- ✓ Environ 40 entreprises dont l'activité, en partie ou en totalité, concerne le biogaz carburant
 - Entreprises de collecte et traitement des déchets
 - Producteurs et distributeurs de biogaz
 - Fournisseurs d'équipements
- √ +300 emplois exclusivement "biogaz carburant"
 - + les emplois lors de la construction des unités de production et de distribution
- ✓ Développement régional technologique et de compétences

29

Le methane, un biocarburant performant

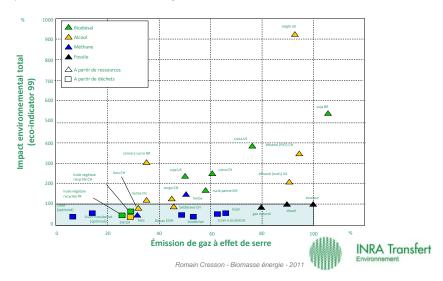
Biofuel	Dieselequiv. I/ha	Operational range at 6l diesel per 100 km
Biodiesel	1.200	20.000 km
Bioethanol	2.000	33.000 km
BTL	3,800 ?	63.000 km
Biomethane	4.000	66.000 km

© W. Verstraete, Gent University, Belgique

Ratio production carburant/consommation énergie

→ Filière bioéthanol :1,38

→ Filière biogaz : 2,5


Romain Cresson - Biomasse énergie - 2011

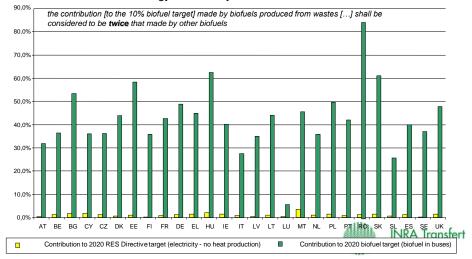
Bio Méthane carburant

Life Cycle Assessment of energy products:

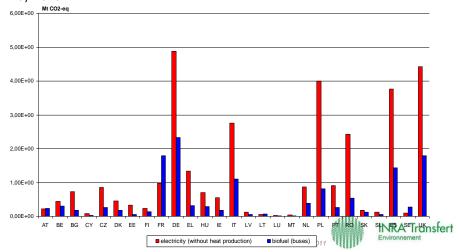

Environmental impacts assessments of biofuels (EMPA, Suisse, 2007)

UF = remplir un réservoir de voiture avec une énergie de 1 MJ à une station Suisse

EU Objectifs fixés : distance à la cible


- Kyoto: reduction of GHG of 8% (compared to 1990 base level)
- To reduce CO₂ emissions by 20% (base year 1990) by 2020 and target of -60 to -80% by 2050
- To reach the binding target of 20% of renewable energy by 2020
- To substitute 10% of fossil fuels for transport with biofuels and other renewable energy sources by 2020
- Revised Fuel Quality Directive: -10% of greenhouse gases per unit of energy by 2020

Potentiel du biogaz en Europe


Contribution to EU targets

- To reach the binding target of 20% of renewable energy by 2020
- To substitute 10% of fossil fuels for transport with biofuels and other renewable energy sources by 2020

Potential CO2-eq savings

- Kyoto: reduction of GHG of 8% (compared to 1990 base level)
- To reduce $\rm CO_2$ emissions by 20% (base year 1990) by 2020 and target of -60 to -80% by 2050
- Revised Fuel Quality Directive: -10% of greenhouse gases per unit of energy by 2020

34

Potentiel du biogaz en Europe

Le CO2 a une valeur "marchande"

- L'UE a adopté en 2003 une directive établissant un système d'échange (Emission Trading Scheme) pour la négociation de quotas d'émission de GES au sein de la Communauté
- L'ambition de l'ETS* est de parvenir à une réduction des émissions de GES de la manière la plus rentable
- La tonne de CO₂ est aujourd'hui autour de 14 € (2010). Cependant, pour notre calcul, nous avons utilisé son prix "avenir" actuellement négocié à environ 21 € / t

Valeur économique du CO2-eq potentiellement évités grâce à la production d'électricité en 2020

0.5-0.8 milliard Euro/an

Valeur économique du CO2-eq potentiellement évités grâce à la production de biocarburant en 2020

0.2-0.3 milliard Euro/an

^{*} Le système communautaire d'échange de quotas d'émission (SCEQE) (en anglais Emission Trading System, ou European Union Emission Trading System (EU ETS) ou EU ETS) est un mécanisme de l'Union européenne visant à réduire l'émission globale de CO2 et atteindre les objectifs del (Union Européenne dans le cadre du protocole de Kyoto.

Conclusions

- L'intérêt pour la digestion anaérobie porte à nouveau sur l'énergie / GES
- L'ACV montre un impact potentiel très élevé pour les biocarburant: 50% de l'objectif biocarburants accessible sans changement dans l'utilisation des terres
- Si on ajoute les déchets agricoles, les boues de STEP et les déchets des IAA
 → on obtient environ 3 x le biométhane obtenu à partir de biodéchets (def.EU)
- ⇒ Fort potentiel de la méthanisation pour atteindre les objectifs de **biocarburants** et de **réduction des GES**

Les clés du développement

La pérennité des gisements

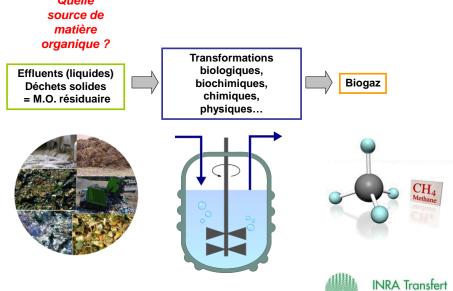
- Codigestion (boues + déchets agricoles et agro-industriels)
- Biodéchets : digestion + post-compostage
- OM « grises » : digestion des refus de tri mécanique + décharge
- Nouveaux gisements (agriculture, sylviculture)

L'évolution des enjeux sociaux et réglementaires

- Valorisation énergétique (électrique, thermique, carburant...)
- Méthanisation → réduction des gaz à effet de serre (si récupération d'énergie)
- Réglementation sur le devenir des composts et digestats
- √ Réglementation claire et accessible
- ✓ Tarification incitative du rachat de l'énergie
- √ Intégration dans une politique globale sur l'environnement et le climat

Plan

- La Méthanisation
 - Définition
 - Contexte
 - Débouchés


Problématique et enjeux

- Traitement des effluents
- Traitement des résidus solides
- · Place de la méthanisation
- Processus biologique
 - Schéma réactionnel
 - · Potentiel méthanogène et ordres de grandeur
- Les procédés
 - Types, Performances, dimensionnement et contrôles
 - · Valorisation des sous-produits
 - · Données économiques
 - Exemples d'applications

IN Envir

Comment produire du biogaz Quelle source de

Traitements biologiques : de quoi?

Matière organique « biodégradable »

Effluents (concentrés)

- IAA,
- industrie chimique, pharmaceutique, ...

Boues d'épuration

Déchets solides

- OM Après tri (élimination des plastiques, métaux,...),
- Biodéchets des ménages,
- Déchets agricoles et déchets verts,
- Déchets industriels...

A l'échelle des effluents industriels

INRA Transfert

AGRO - FOO!	D INDUSTRY	BEVERAGE 29%	ALCOHOL 10% DISTILLERY	PULP & PAPER 11%	MISCELLANEOUS 14%
Sugar	Cannery	Beer	Sugar cane juice	Recycle paper	Chemical
Potato	Confectionery	Malting	Sugar cane molasses	Mechanical	Pharmaceutical
Starch	Fruit	Soft drink	Sugar beet molasses	pulp	Sludge liquor
Yeast	Vegetable	Fruit juice	Grape wine	NSSC	Municipal sewage
Pectin	Dairy	Wine	Grain	Sulphite pulp	Landfill leachate
Citric acid	Bakery	Coffee	Fruit	Straw	Acid mine water
				Bagasse	
1	,	•	-	-	-
	Yeast, Italy		Distillery, Japan	Paper, Netherlands	Chemical, Netherlands
		Brazil			

Lagune anaérobie sur vinasses

Digesteur d'une industrie chimique

Digesteur SAUZA à Tequila (Mexique)

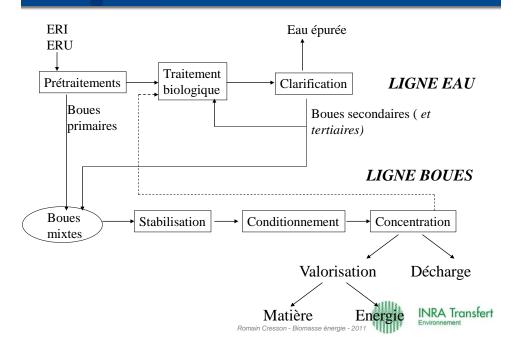
Exemple de STEP urbaine

4

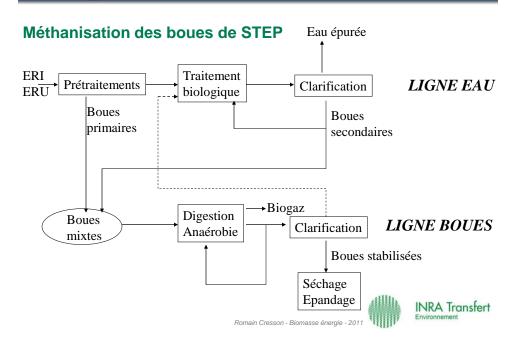
En France

- 1999: 900 000 tonnes de MS
- 2005 : 1 300 000 tonnes de MS (50% d'augmentation)
- Filières d'élimination :
 - Épandage agricole (60%)
 - Mise en décharge (24%)
 - Incinération (14%)
 - Méthanisation (2%)

Problématique des boues de STEP


Stabilisation : Réduction des matières fermentiscibles, des odeurs, des germes pathogènes

perte de masse


	L
- digestion anaérobie thermophile ou mésophile (avec prétraitements physico chimiques)	oui
- digestion aérobie	oui
- compostage	oui
- stabilisation à la chaux	non
- stabilisation au chlore, aux nitrites	non

Problématique des boues de STEP

Problématique des boues de STEP

Sludge Digesters in Xi'an ,China (40,000m3)

Déchets Solides

Déchet : « tout résidu d'un processus de production, de transformation ou d'utilisation, toute substance, matériau ou produit, ou plus généralement tout bien, meuble abandonné ou que son détenteur destine à l'abandon. » (loi du 15/07/1975).

Toute activité humaine génère un déchet...

Déchets des ménages Déchets des collectivités Déchets des industries Déchets agricoles

Les déchets en France

- Sur les 868 Mt de déchets de toutes origines (ménagers : 50 Mt et non ménagers : 818 Mt), 84% sont issus de la filière agricole et industrielle,
- L'industrie alimentaire produit près de la moitié des déchets d'origine industrielle,
- Près des 3/4 des déchets de toutes activités sont susceptibles de subir une transformation biologique.

Digesteur sur déchets organiques

26

Amiens (Valorga)

Mise en service: 1988

Capacité: 100 000 t/an

Déchets traités:

Ordures ménagères brutes

FFOM

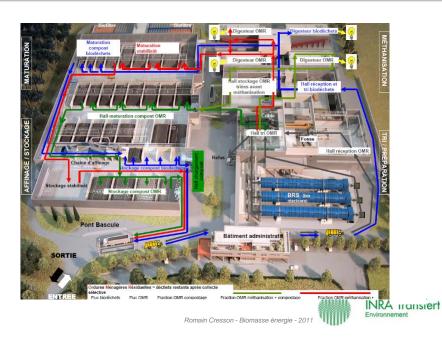
Déchets verts

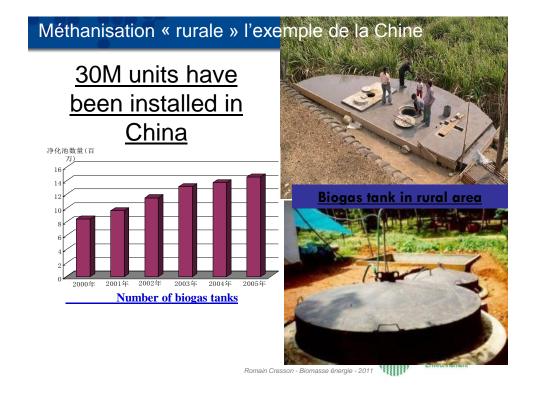
Déchets organiques agro-industriels

 $3 \times 2500 \text{ m}^3 + 1 \times 3500 \text{ m}^3$

Biogaz transformé en vapeur livrée à un industriel

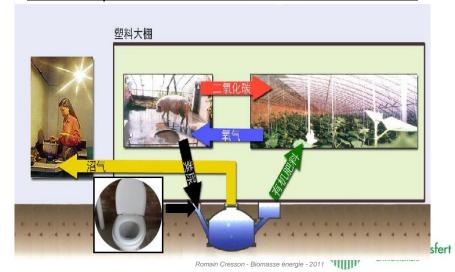
Usine de traitement des déchets à Montpellier


Capacité


- 170 000 t/an de déchets résiduels urbains
- 33 000 t/an de biodéchets

Valorisation énergétique

- 14 400 000 Nm³ biogaz
- 29 000 MWh électrique



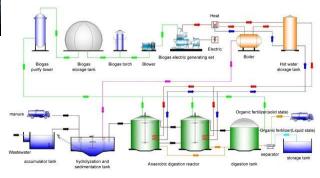
Méthanisation « rurale » l'exemple de la Chine

农村沼气技术 - 四位一体

Multi-Purpose Installation for Rural Households

Méthanisation « rurale » l'exemple de la Chine

Traitement des effluents d'élevage


Ming-He chicken manure treatment plant (Shandong province)

Produces 3.7 million chickens annually and maintains 1.5 million chickens for breeding

Chicken manure 500t/d
Biogas electric generating set 3 MW
CDM 67,000 t CO₂

Méthanisation à la ferme

GAEC du Bois Joly

- 70 ha
- · 50 vaches
- 500 lapins
- → 1500 tonnes / an de fumier bovins
- + quelques fruits et légumes déclassés

→ Puissance électrique: 30KW→ Puissance Thermique: 60KW

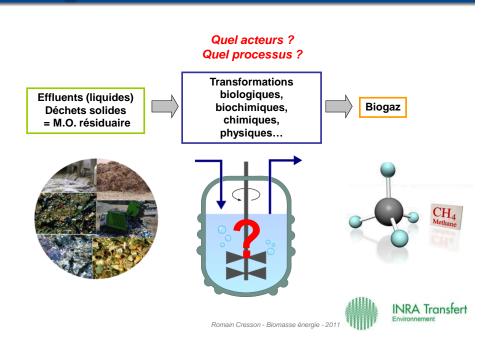
Installation simple: 4 digesteurs (4 fosses de 183m³) batch voie sèche avec recirculation des jus et chauffage

Plan

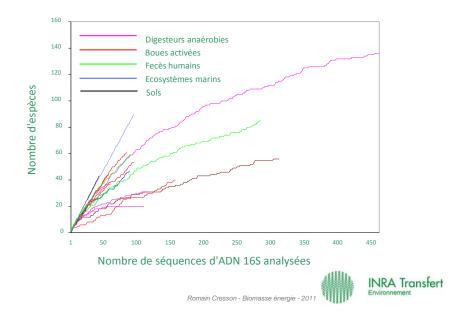
- La Méthanisation
 - Définition
 - Contexte
 - Débouchés

Problématique et enjeux

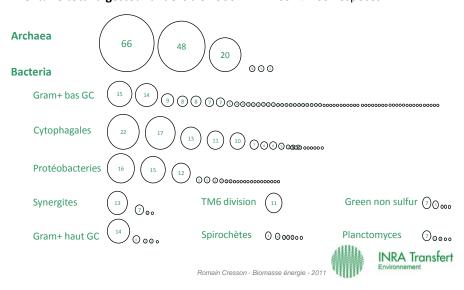
- · Traitement des eaux résiduaires
- · Traitement des résidus solides
- · Place de la méthanisation


Processus biologique

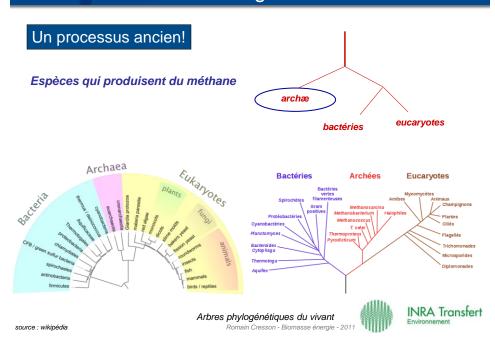
- Schéma réactionnel
- · Potentiel méthanogène et ordres de grandeur
- Les procédés
 - · Types, Performances, dimensionnement et contrôles
 - · Valorisation des sous-produits
 - · Données économiques
 - Exemples d'applications



Comment produire du biogaz

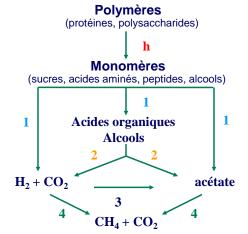


Digestion anaérobie : un écosystème complexe



Digestion anaérobie : un écosystème complexe

Ex: Inventaire total digesteur anaérobie : 580 ADNr 16S → 139 "espèces"

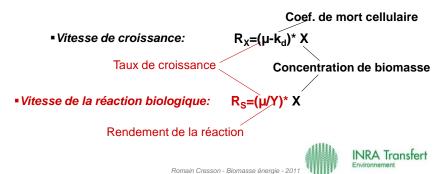

Origine de la méthanisation

Origine de la méthanisation

Digestion anaérobie : Schéma réactionnel

Consortium Méthanogène

- h Hydrolyse enzymatique
- 1 Bactéries fermentaires
- 2 Bactéries acétogènes
- 3 Bactéries homoacétogènes
- 4 Archæa méthanogènes



Romain Cresson - Biomasse énergie - 2011

Rappels sur les réactions biologiques

- ■Transformation de composés chimiques en d'autres composés....
- ... En présence d'un « catalyseur » (la biomasse)...

....Qui se reproduit

Rappels sur les réactions biologiques

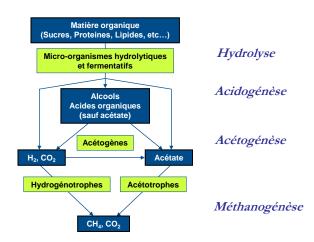
Le taux de croissance μ :

μ = f(X, T, Si, Pi, pH, I,)

Type de micro-organismes (temps de doublement), Température,

Concentration des différents substrats,

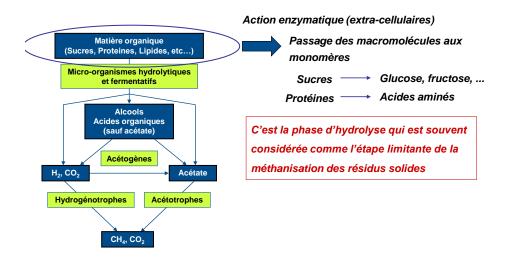
Concentration des différents produits de la réaction, pH.


Présence de toxiques ou d'inhibiteurs,

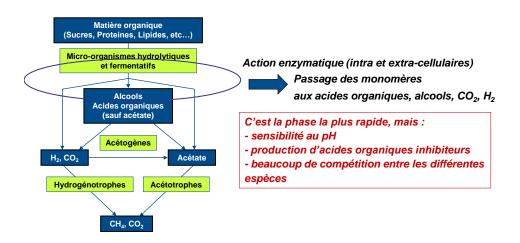
nomio 2011

INRA Transfert

Romain Cresson - Biomasse énergie - 2011

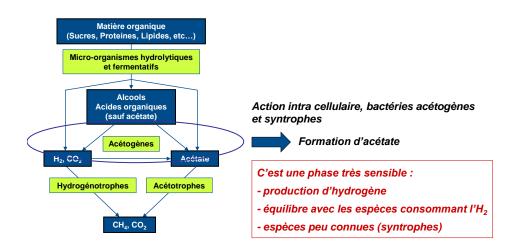

Le Processus de Méthanisation

Romain Cresson - Biomasse énergie - 2011 INRA Transfert Environnement


35

La phase d'Hydrolyse

La phase d'Acidogenèse



Hydrolyse et acidogénèse

- Etape réalisée par bactéries hydrolytiques et fermentatives, notamment des genres Clostridium, Ruminococcus, Bacillus, Escherichia, Bacteroïdes, Enterobacter...
- Bactéries anaérobies strictes ou facultatives, grande diversité croissance rapide : temps de doublement de quelques heures
- · Macromolécules et particules solides sont hydrolysées et fermentées en
 - AGV (acides acétique propionique, butyrique, valérique...)
 - · alcools
 - autres acides organiques (lactique...)
 - H₂ et CO₂
- Hydrolyse : lente , réaction limitante pour matière solide
- · Acidogénèse : rapide
- peut se réaliser dans cuve tampon (certains effluents IAA avec DCO soluble et majoritairement fermentescible)

La phase d'Acétogenèse

Acétogénèse

1- Bactéries homoacétogènes

genres Clostridium, Acetobacterium, Sporomusa...

Groupe 1
$$C_6H_{12}O_6 \longrightarrow CH_3COO^- + 3 H^+ \Delta G^{\circ}'=-311kJ/réaction$$

Groupe 2
$$4H_2 + 2 HCO_3^- + H^+ \longrightarrow CH_3COO^- + 4 H_2O$$
 ΔG° '=-104,6 kJ/réaction

ΔG°': Energie libre standard : pH=7, 25°C.

Acétogénèse

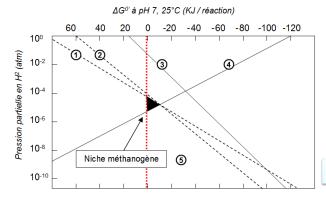
2- Bactéries syntrophes

genres Syntrophobacter, Syntrophomonas, Syntophosphora, Syntrophus....

Oxydation d'acides
$$C_2H_5COO^- + 3 H_2O \longrightarrow CH_3COO^- + 3 H_2 + H^+ + HCO_3^- \Delta G' = -1 kJ/réaction \Delta G^\circ' = + 74 kJ/réaction Oxydation d'alcools $C_2H_5OH + H_2O \longrightarrow CH_3COO^- + 2 H_2 + H^+ + \Delta G' = -44 kJ/réaction \Delta G^\circ' = + 2 kJ/réaction Oxydation d'acides aminés $CH_3CH(NH_2)COOH + 3H_2O \longrightarrow CH_3COO^- + HCO_3^- + 2 H_2 + H^+ + NH_4^+ + \Delta G' = -38 kJ/réaction \Delta G^\circ' = + 8 kJ/réaction Oxydation de composés aromatiques $C_6H_5COO^- + 7 H_2O \longrightarrow 3 CH_3COO^- + HCO_3^- + 3 H_2 + 3 H^+ + \Delta G' = -16 kJ/réaction \Delta G^\circ' = +53 kJ/réaction$$$$$

 Δ G': Energie libre à pH=7, 25°C à pH₂=10⁻⁴ atm

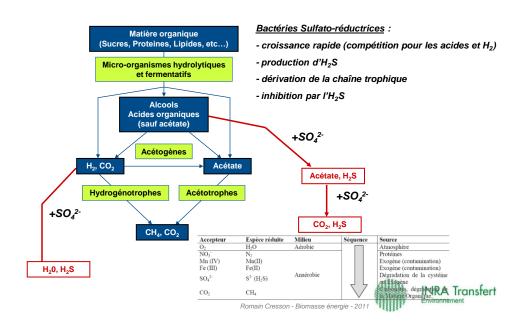
INRA Transfert


Vitesses réactionnelles d'acétogénèse

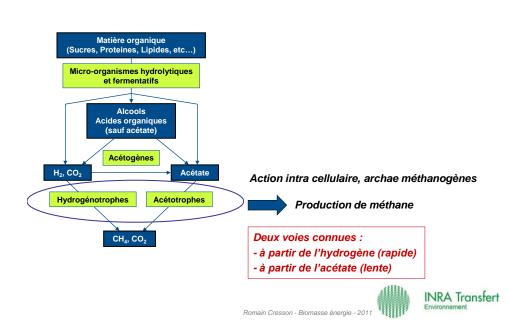
- · généralement lentes
- problèmes d'inhibition par H₂ qui modifie l'équilibre thermodynamique global
- les bactéries syntrophiques ne peuvent effectuer les réactions que si une seconde bactérie élimine la molécule produite
- H₂ molécule clé pour la digestion anaérobie
 - · produite par bactéries syntrophes
 - éliminée par bactéries homoacétogènes, méthanogènes hydrogénophiles et sulfato-réductrices

** Acétogénèse

Influence de la pression partielle de H₂


- 1, 2 et 3 : acétogenèse du propionate, du butyrate et de l'éthanol.
- 4 et 5: méthanogenèse autotrophe (H₂, CO₂) et acétoclaste.

 10^{-6}


Evolution de l'énergie libre de Gibbs (ΔG^*) des réactions de conversion de l'éthanol, du propionate, du butyrate en acétate et de la production de méthane à partir de H2/CO2 en fonction de la pression partielle en hydrogène. [propionate] = [butyrate] = [éthanol] = [acétate] = 1 mM ; [HCO3-] = 100 mM ; pression en CH4 = 0,5 atm.

Le rôle du Soufre (sulfates)

La phase de Méthanogenèse

Méthanogénèse

Archae, anaérobie stricte, nécessite potentiel potentiel rédox bas

1- Méthanogènes hydrogénophiles

genres Methanococcus, Methanomicrobium, Methanogenium...

$$HCO_3^- + 4 H_2 + H^+ \longrightarrow CH_4 + 3 H_2 O$$
 $\Delta G^{\circ} = -135,6 \text{ kJ/réaction}$

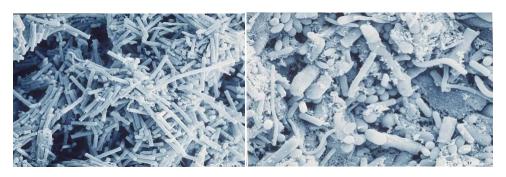
$$4HCOO^{-} + H_{2}O + H^{+} \longrightarrow CH_{4} + 3 HCO_{3}^{-} \qquad \Delta G^{\circ}' = -130 \text{ kJ/réaction}$$

vitesses de réaction rapides, temps de doublement de croissance de quelques heures

2- Méthanogènes acétoclastes

genres Methanosarcina, Methanothrix...

$$CH_3COO^- + H_2O \longrightarrow CH_4 + HCO_3^-$$


ΔG°'= -31 kJ/réaction

70% de méthane produit par cette voie

vitesses de réaction lentes, temps de doublement de croissance de 0,5 à ransfert plusieurs jours Romain Cresson - Biomasse énergie - 2011

Granules anaérobies (SEM)

Acetate as Substrate (*Methanosaeta*)

Sucrose as Substrate (mixed culture)

	Temps de	Rdt cellulaire	Activité	ks
	doublement	gMV.g ⁻¹ DCO	gDCO. gMV ⁻¹ .d ⁻¹	mM
Boue activée (sucre)				
Aerobic Bacteria	0.030	0.40	57.8	0.25
Acidification (sucre)				
Fermentative Bacteria	0.125	0.14	39.6	ND
Acetogenese (Ac. gras)				
Acetogenic Bacteria	3.5	0.03	6.6	0.4
Methanogenese				
Autotrophe (H2)	0.5	0.07	19.6	0.004
Acetoclaste (acetate)				
Methanosarcina	1.5	0.04	11.6	5.0
Methanosaete	7.0	0.02	5.0	0.3

Methanosaete (t_d =7 d), taux de croissance = $ln(2)/t_d$ = 0.1 d⁻¹

Conditions opératoires

1- Température

Psychrophile 5 à 15°C ---> technologies extensives

Mésophile 15 à 45°C ---> **35-40°C**

Thermophile 45 à 65°C ----> 55-60°C

- utilisation d'effluents chauds (peut être suffisant si TSH court)
- chauffage du digesteur par le biogaz

2- Concentration en DCO de l'effluent

non adaptée au effluents dilués froids (énergie pour chauffer) adaptée aux effluents chargés (> 2 g DCO/L)

sauf dans pays chauds: digestion anaérobie appliquée aux ERU (0,5g DCO/L)

taux d'épuration de 80 à 98% de la DCO soluble nécessite souvent un traitement de finition aérobie avant rejet dans milieu

Dans certains effluents (ex mélasses de betteraves), présence de molécules difficilement biodégradables : DCO dure

Conditions opératoires

3- pH

pH optimum proche de la neutralité 6,5 à 8,5. on peut corriger le pH dans l'alimentation, éviter la chaux (précipitation de carbonate de calcium)

4- Alcalinité

due aux AGV et aux bicarbonates nécessité d'avoir une alcalinité "bicarbonates de calcium" relativement élevée : au moins 1000 mg/L d alcalinité CaCO₃ effluent chargé en N organique va produire de l'azote ammoniacal.

5- Production de boues

5% de la DCO consommée sert à la croissance des microorganismes (10-30% pour le traitement aérobie) 0,05 kg de MS/kg DCO éliminée (0,3 à 0,5 en aérobie)

INRA Transfert

Romain Cresson - Biomasse énergie - 2011

Conditions opératoires

6 - Potentiel d'oxydo-réduction

doit être bas : de -250 à -600 mV ---> -300 à -330 mV pour fonctionnement des méthanogènes (anaérobies strictes)

7- Nutriments

nécessite des micro-éléments N, P C/N/P optimal = 150/4/1 mais aussi Fe, Ni, Mg, Ca, Na, Co souvent présents dans effluents IAA.

8 - Stabilité

 10^{-6} 2</sub> < 10^{-4} atm

stabilité fonction de l'adéquation entre la charge organique appliquée et la capacité réactionnelle des microorganismes.

étape limitante : méthanogénèse acétoclaste ou acétogénèse si charge organique > capacité du réacteur : accumulation AGV

baisse du pH inhibition des méthanogènes

43

Conditions opératoires

9-Inhibitions

AGV, pH, ppH2, Azote ammoniacal

mg/L	Modérée	Forte
Sodium	3500-5500	8000
Potassium	2500-4500	12000
Calcium	2500-4500	8000
Magnésium	1000-1500	3000
N-ammoniacal	1500-3000	>3000
Sulfure		200
Cuivre		50-70
Chrome(VI)		200-600
Chrome (III)		180-420
Nickel		30
Zinc		1-30

→ Tolérance augmente avec l'adaptation de l'écosystème (stabilité)

Plan

Romain Cresson - Biomasse énergie - 2011

- La Méthanisation
 - Définition
 - Contexte
 - Débouchés
- Problématique et enjeux
 - · Traitement des eaux résiduaires
 - · Traitement des résidus solides
 - · Place de la méthanisation

Processus biologique

- Schéma réactionnel
- Potentiel méthanogène et ordres de grandeur
- Les procédés
 - Types, Performances, dimensionnement et contrôles
 - Valorisation des sous-produits
 - Données économiques
 - Exemples d'applications

INRA Transfert
Environnement

Potentiel Méthanogène

Le potentiel méthanogène (BMP) correspond à la quantité maximale de méthane produit par un composé lors de sa dégradation.

Théorie:

$$\begin{split} C_n H_a O_b + & \left(n - \frac{a}{4} - \frac{b}{2} + \right) H_2 O \rightarrow \left(\frac{n}{2} - \frac{a}{8} + \frac{b}{4}\right) C O_2 + \left(\frac{n}{2} + \frac{a}{8} - \frac{b}{4}\right) C H_4 \\ P M_{th} &= \frac{\frac{n}{2} + \frac{a}{8} - \frac{b}{4}}{12n + a + 16b} \times 22,4 \end{split} \tag{LCH_4/g}$$

Exemple: le glucose $C_6H_{12}O_6$ $PM_{th} = 0.373 LCH_4/g$

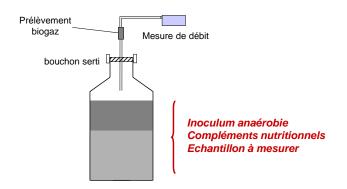
90

Potentiel méthanogène et DCO

Lien avec la DCO (demande chimique en oxygène) :

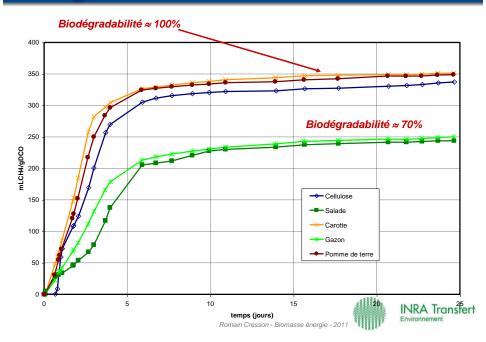
La demande chimique en oxygène est la quantité d'oxygène nécessaire pour oxyder complètement un composé.

$$C_nH_aO_b + \left(n + \frac{a}{4} - \frac{b}{2}\right)O_2 \rightarrow nCO_2 + \left(\frac{a}{2}\right)H_2O$$


$$DCO_{th} = \frac{n + \frac{a}{4} - \frac{b}{2}}{12n + a + 16h} \times 32 \quad (gO2/g)$$
Glucose $(C_6H_{12}O_6) = 1,067 \, gO2/g$

Correspondance simple :

$$\frac{PM_{th}}{DCO_{th}} = \frac{\frac{\frac{n}{2} + \frac{a}{8} - \frac{b}{4}}{12n + a + 16b} \times 22,4}{\frac{n + \frac{a}{4} - \frac{b}{2}}{12n + a + 16b} \times 32} = 0,35 \, LCH_4/g_{DCO}$$


2011 INRA Transfert

Mesure du potentiel méthanogène

Exemples de potentiel méthanogène

Unités et ordres de grandeur

Le potentiel méthanogène s'exprime :

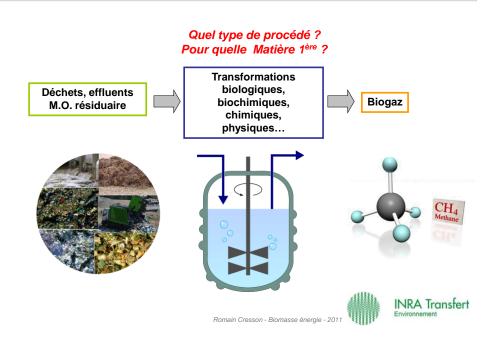
- en m³ de méthane par kg de déchet frais (rare)
- en m³ de méthane par kg de matière sèche (m³CH₄/kgMS)
- en m³ de méthane par kg de matière organique (ou volatile) : m³CH₄/kgMV
- Pour les solides, rarement en m³ de méthane par kg de DCO (mesure de DCO difficile)

Déchets municipaux (biodéchets) :0,25 à 0,3 m³/kgMVDéchets municipaux (OM grises) :0,2 à 0,25 m³/kgMVGraisses (lipides) :1 m³/kgMVSucres :0,415 m³/kgMVProtéines :0,496 m³/kgMVBoues d'épuration :0,3 m³/kgMV

* valeurs théoriques maximales

Romain Crosson Riamanna ánarria 2011

Unités et ordres de grandeur DÉJECTIONS DÉCHETS RÉSIDUS DÉCHETS DE ANIMALES DE CULTURE D'IAA COLLECTIVITÉS 400 m³ de CH₄ par tonne de matière brute 350 300 250 200 150 100 50 **INRA** Transfert Romain Cresson - Biomasse énergie - 2011


Plan

- La Méthanisation
 - Définition
 - Contexte
 - Débouchés
- Problématique et enjeux
 - · Traitement des eaux résiduaires
 - · Traitement des résidus solides
 - Place de la méthanisation
- Processus biologique
 - Schéma réactionnel
 - · Potentiel, méthanogène et ordres de grandeur
- Les procèdes
 - Types, Performances, dimensionnement et cont
 - · Valorisation des sous-produits
 - Données économiques
 - Exemples d'applications domaisse énergie 2011

INRA Transfert

Comment produire du biogaz

Les procédés de méthanisation

Les grandes familles de procédés

Température

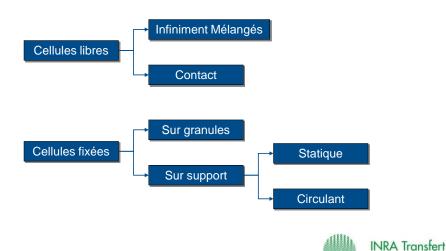
Procédés mésophiles (35°C) Procédés thermophiles (55°C)

Configuration

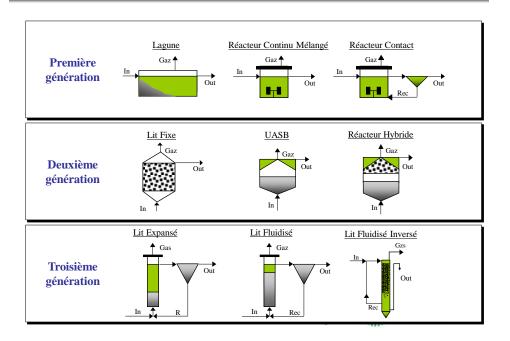
Procédés à une étape Procédés deux étapes

Teneur en eau dans le réacteur

Procédés dits « humides » (5 à 15% de MS) Procédés dits « secs » (20 à 40% de MS)


Teneur en matière sèche (cissité) du produit

Effluents (0 à 5 % de MS) Résidus solides (5 à 60 % de MS)



Les procédés « humides »

Typologie des procédés

Caractéristiques des bioprocédés

Les procédés « humides »

Des performances variables

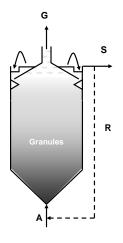
100

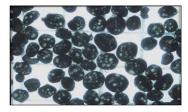
Lagune

Lit fluidisé

Même eau usée, même quatité de pollution éliminée *MAIS*...

✓ 300 m³
 ✓ 21 jours
 ✓ boucle ouverte (pas de contrôle)


 \checkmark 0.15 m³ \checkmark 1 jour \checkmark boucle fermée (contrôle actif)



INRA Transfert

Les réacteurs à lits de boues (granules)

Upflow Anaerobic Sludge Blanket (UASB) Reactor

Charge volumique: 10 à 25 kgDCO/ m³.jour

TSH: 0,5 à 2 jours

Vitesse de décantation des granules élevée : 20-50 m/h

Forte densité de biomasse : 20-50 kgMVS/m³

Hauteur: 4-6 m

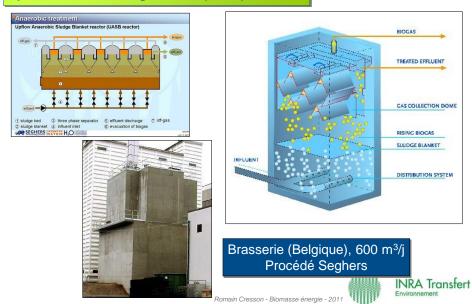
Vitesse ascensionnelle du liquide : 0,5-2 m/h

omain Crosson - Riomasso ánomio - 2011

INICA ITUITSTE

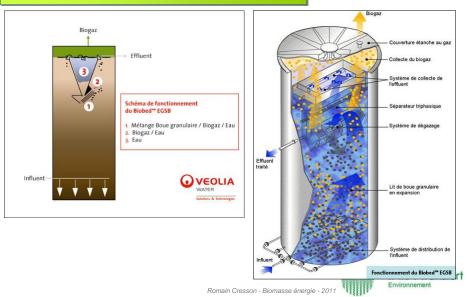
102

Décantation des boues anaérobies



Granulaire Flocculante Dispersée

Les réacteurs à lits de boues (granules)


Upflow Anaerobic Sludge Blanket (UASB) Reactor

Les réacteurs à lits de boues (granules)

Expanded Granular Sludge Bed (EGSB) Reactor

104

Expanded Granular Sludge Bed (EGSB) Reactor

Charge volumique: 20 à 30 kgDCO/ m³.jour

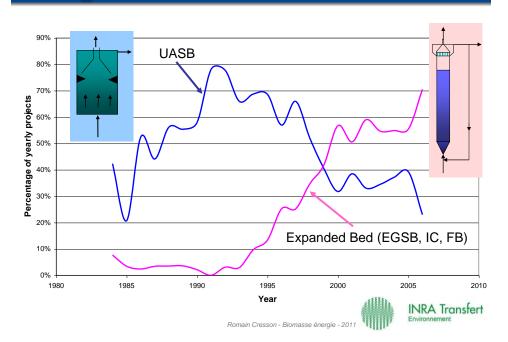
TSH: 0,5 à 1 jours

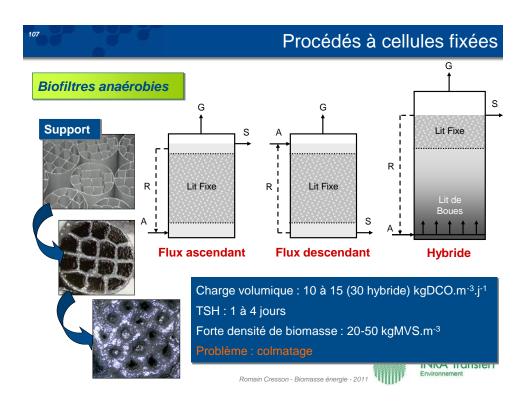
Vitesse de décantation des granules très élevée : 60-100 m/h

Hauteur: 12 à 18 mètres

Vitesse ascensionnelle du liquide : 5-6 m/h Auto-nettoyage du séparateur triphasique

106





INRA Transfert

Expanded Bed versus UASB Systems

Anaerobic Fluidized Bed (AFB) Reactors Treating for Phenol-Formaldehyde Wastewater in Taiwan

4.5mΦ; 22 mH

Romain Cresson - Biomasse énergie - 2011

110

Procédés humides

Paramètres de fonctionnement et performances

digesteur	CVA(Kg DCO/m³/j)		TSH (j)	
lagune anaérobie	٨	0,1 à 1		10 à 60
contact anaérobie	Λ	1 à 5,5		5 à 10
filtre anaérobie	/\	5 à 15		1 à 5
hybride		10 à 20		1 à 4
UASB		5 à 20		0,5 à 2
compartiments verticaux		9 à 15		2 à 3
recirculation interne		20 à 40	\bigvee	0,2 à 1
lit fluidisé		20 à 40	V	0,2 à 1

Procédés humides

Choix de la technologie

Caractéristiques de l'effluent

- si chargé en MES
 - ⇒ colmatage des filtres
 - ⇒ choisir contact ou lit fluidisé
- si peu chargé en DCO
 - ⇒ TSH faible possibilité de lessivage de la biomasse
 - ⇒ choisir biofilm (supports fixes ou mobiles)

112

Procédés humides

Effluents de IAA

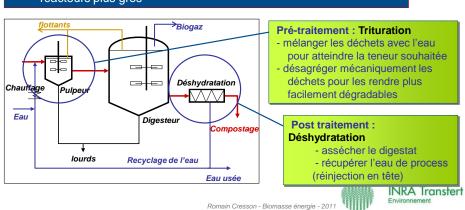
Effluents des IAA généralement bien adaptés

- ne contiennent pas de molécules toxiques
- DCO élevée
- sources et débouchés pour la chaleur

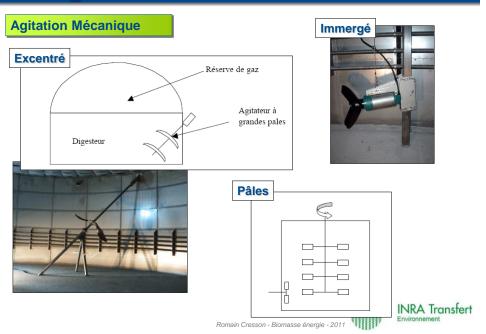
Applications dans

- sucreries, confitureries
- laiteries
- unités de jus fruits
- transformation de la pomme de terre
- conserveries de légumes
- brasseries et boissons
- vinification, distilleries vinicoles
- levureries...

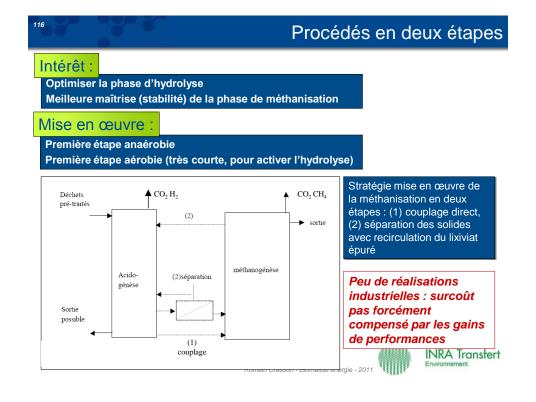
Possibilité de traiter également les déchets solides...


Les procédés « humides », « substrat sec »

Avantages


- simplicité de pompage et de transferts (coûts réduits)
- la trituration mécanique favorise l'hydrolyse

Inconvénients

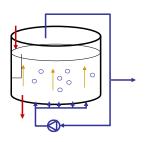

- formation d'une couche « flottante »
- sédimentation des lourds
- réacteurs plus gros

Les procédés « humides », « substrat sec »

Les procédés « secs » **Avantages** - Réduction de la taille des réacteurs - Spectre des substrats plus large Inconvénients - Complexité de la matrice solide - Procédés rudimentaires - Absence de critères de performances - Exploitation des installations Criblage >Biogaz Retenir les petites particules (40 mm) Alimentation Simplifier le pompage / transfert (vis sans fin) Déshydratation **Broyage** Chauffage Augmenter la disponibilité de la m.o. Augmentation des performances Compostage Autres... Utilisation de réservoirs « tampon » Recyclage de l'eau de procédé chauffés (hydrolyse) Eau usée Trituration / pulpage mécanique ... **INRA** Iranstert

Le procédé VALORGA

Urbaser (Esp) Valorga


25 à 35 % MS

Charge: 3 à 5 kgMV.m-3.j-1

Temps de séjour : 15 à 30 jours

Thermophile ou mesophile (Freiburg, Genève)

Le mélange est assuré un recyclage du biogaz injecté sous pression par intermittence

Romain Cresson - Biomasse énergie - 2011

Romain Cress

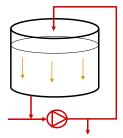
alli Cresson - Biornasse energie - 2011

Le procédé DRANCO

ows

20 à 50 % MS

118


Charge: 10 à 20 kgMV.m⁻³.j⁻¹ Temps de séjour: 15 à 30 jours

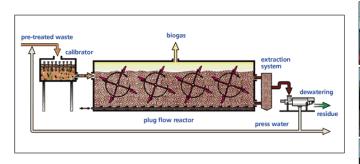
Thermophile ou mésophile (Freiburg, Genève)

Le mélange est assuré par la recirculation du

milieu avec les intrants frais

Ecoulement du solide vers le bas

Le procédé KOMPOGAS


Nécessité de maintenir un taux de solide proche de 20-25%

Temps de séjour : 15 à 20 jours

Le mélange est assuré par des mobiles (agitateurs transversaux lents)

Ecoulement du solide horizontal

Substrats: FFOM, déchets organiques solides, Déchets verts municipaux,...

Romain Cresson - Biomasse énergie - 2011

120

Paramètres du dimensionnement

La charge appliquée

Exprimée en KgDCO/m³/j (liquides) et kgMS/m³/j ou kgMV/m³/j (solides)

Varie selon les systèmes : 1 à 40 kgMO/m³/j

Conséquence sur la taille des unités (humides > secs)

Le temps de séjour

Temps « moyen » passé par les déchets dans le réacteur

Varie de quelques heures (procédés humides forte charge) à 30 jours

(procédés secs)

Thermophile < mésophile

Paramètres de contrôle des méthaniseurs

Les conditions d'entrée

Taux de matière (organique, sèche et volatile de l'intrant) : Charge organique Débit massique (ou volumique + densité)

En sortie

Biogaz : débit, composition (CH₄/CO₂/H₂S), teneur en eau

Digestat : MS, MV, débit massique

Dans le réacteur

pH de 6,5 à 8,5

Potentiel Redox de -300 à -400 mV

Acides organiques (acides gras volatils : acétate, propionate, butyrate)

ammonium (NH₄+)

122

Estimation des performances

Par rapport au méthane produit

Base : quantité de méthane produit

Comparaison au potentiel méthane mesuré

Souvent difficile à mesurer

Procédés humides : élimination de la matières organique

Rendement épuratoire : bilan entrée / sortie

Procédés secs : élimination de matières volatiles

Base : bilan entrée / sortie

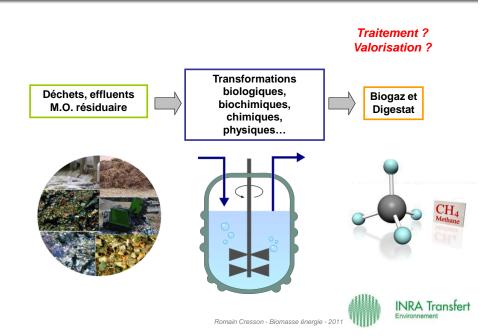
Problème : comment tenir compte des boues anaérobies?

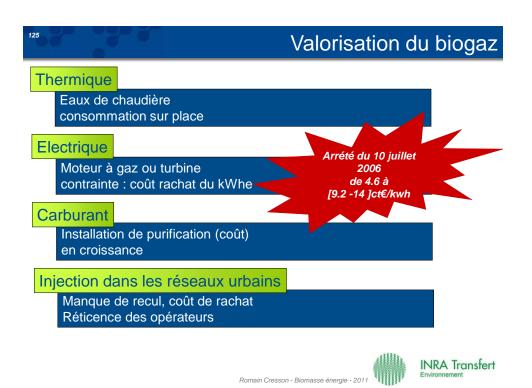
Facile à mesurer, mais pertinence limitée...

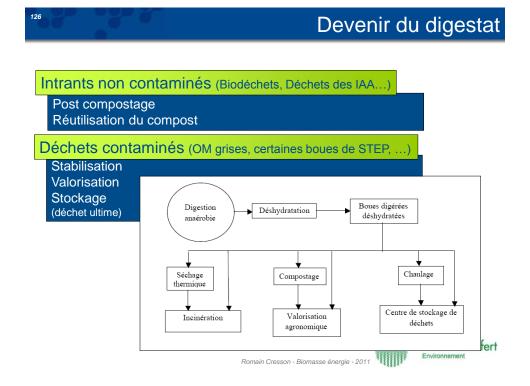
Plan

- La Méthanisation
 - Définition
 - Contexte
 - Débouchés
- Problématique et enieux
 - Traitement des eaux résiduaires
 - Traitement des résidus solides
 - Place de la méthanisation
- Processus biologique
 - Schéma réactionnel
 - Potentiel méthanogène et ordres de grandeur

Les procédés


- Types. Performances, dimensionnement et contrôles
- · Valorisation des co-produits
- Données économiques
- Exemples d'applications Romain Cresson - Biomasse énergie - 2011




INRA Transfert

12

Comment produire du biogaz

Plan

- La Méthanisation
 - Définition
 - Contexte
 - Débouchés
- Problématique et enieux
 - · Traitement des eaux résiduaires
 - · Traitement des résidus solides
 - Place de la méthanisation
- Processus biologique
 - Schéma réactionnel
 - Potentiel méthanogène et ordres de grandeur
- Les procédés
 - Types, Performances, dimensionnement et contrôles
 - Valorisation des co-produits
 - · Données économiques

Romain Cresson - Biomasse énergie - 2011

128


Economie de la méthanisation

Investissement = f (taille de l'unité)

Pour des unités de plus de 3 t DCO/j : 350 000 euros / tonne de DCO traitée /par jour.

Pour de plus petites unités, ce ratio croît de façon exponentielle,

Les annuités liées aux investissements représentent la principale composante du coût global.

Economie de la méthanisation

Coûts d'exploitation et recettes

€/T DCO ENTRANTE	COÛTS DE FONCTIONNEMENT	RECETTES
Main-d'œuvre	15-30	
Électricité	5-10	
Réactifs	0-150	
Combustible	0-10	
Élimination des boues	0-20	
Valorisation du biogaz		0 à 130
TOTAL	20 à 70 (hors réactifs) et jusqu'à 220	0 à 130

130

Economie de la méthanisation

Recettes d'exploitation

Valorisation énergétique jusqu'à 70% :

- Thermique : process de l'usine
- Electrique : revente EDF (9 à 14 cts kWh) ou consommée sur site

La production de biogaz : 3,1 kWh/kg DCO entrante. Jusqu'à 2,2 kWh/kg DCO entrante peuvent être valorisés

Coût des énergies fossiles : 22 à 60 €/MWh (fonction du type combustible et de la quantité consommée).

→ Economies : jusqu'à 130 €/t DCO entrante

13

Economie de la méthanisation

Economies générées par le process

Electricités

Conso . Filière anaérobie : 100 à 300 kWh/t DCO entrante Conso . Filière aérobie : 1200 kWh/t DCO entrante

Elimination des boues

Anaérobie 30 à 50 kg MS/t DCO éliminée

Aérobie 200 à 270 kg MS/t DCO éliminée

132

Dépollution par digestion anaérobie - mémo

- produit du biogaz valorisable, utilisable sur le lieu de production
- produit peu de boues : 0,05 kg de MS/kg DCO éliminée (0,3 à 0,5 en aérobie)
- nécessite peu d'énergie pour fonctionner
- nécessite T>20°C pour avoir des vitesses correctes : 35-40°C en mésophile,
 55-60°C en thermophile

non adaptée au effluents dilués froids (énergie pour chauffer) adaptée aux effluents chargés (> 2 g DCO/L)

- charges organiques élevées : 2 à 40 kg DCO / m³réacteur/jour
- Diminution de 60 à 98% de la DCO soluble, 20 à 60% des solides volatils
- nécessite souvent un traitement de finition aérobie pour normes de rejet
- bien adaptée (par rapport à aérobie) pour effluents limités en N et P
 C/N/P optimal = 150/4/1
- -nécessite des micro-éléments N, P mais aussi Fe, Ni, Mg, Ca, Na, Co
- croissance lente des micro-organismes → les retenir dans le réacteur
- la pollution azotée n'est que peu affectée
- pH optimum, proche de la neutralité : 6.5 à 8.5
- potentiels d'oxydo-réduction bas: -300 à -330 mV (-250 à -600 mV)

INRA Transfert