

Ecole chercheur Biotechnologies pour le traitement de l'eau et des déchets - juin 2011

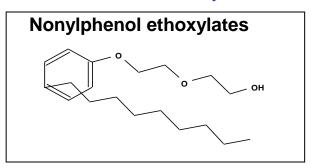
Les micropolluants organiques: présence dans les eaux, les boues et les sols et devenir au cours des procédés de traitement

Nonylphenol éthoxylé (NPE) 10 µg/l ou mg/kg

Hydrocarbure Polycyclique (PAH) > 1 μg/l ou mg/kg

Oestradiol (E2)
10 ng/l ou µg/kg

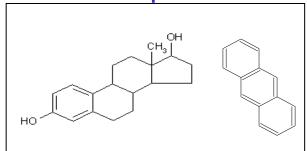
Dominique PATUREAU INRA LBE NARBONNE


ALIMENTATION
AGRICULTURE
ENVIRONNEMENT

De quoi parle-t-on ??

Les xenobiotiques

Substances chimiques auxquelles l'environnement n'a jamais été exposé


Les contaminants

nitrates

phosphates

Substances chimiques naturelles ou d'origine anthropique présentes à une concentration inhabituelle dans un milieu donné

Les micropolluants 2001 lors de la convention de Stockholm

Substances chimiques naturelles ou d'origine anthropique susceptibles d'avoir une action toxique à des concentrations infimes dans un milieu donné

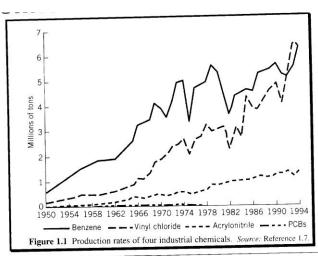
De quoi parle-t-on ??

Les principaux types de micropolluants

```
Les micropolluants inorganiques ou minéraux ou ETM: As, Pb, Cu, Zn, Cd, Ni, Hg.....
```

```
Les micropolluants organométalliques : méthyle de mercure, organoétains.....
```

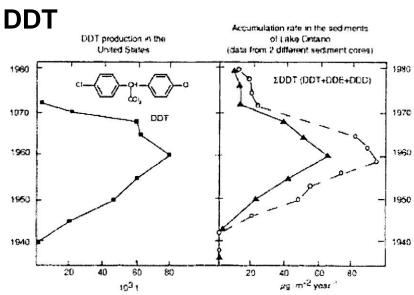
```
Les micropolluants organiques ou CTO: classement selon leur formule chimique, leur propriété, leur effet......
```

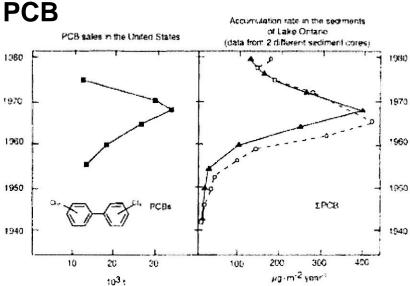

```
les hydrocarbures
les polychlorobiphényles
les retardateurs de flamme
les pesticides
les détergents
les résidus de médicaments
les dioxines.....
```


L'origine

- Jusqu'en 1800: la plupart des matériaux étaient issus de notre environnement
- 19ème siècle : âge d'or de l'or noir et de ses dérivés
- 1930-1950 : apport de la chimie ex addition de chlore sur les solvants aliphatiques améliorant les propriétés (non inflammable, plus dégraissant...)

« Dieu a crée 91 éléments, l'homme plus de 1000 et le diable un seul: le chlore », Greenpeace magasine (Belgique), 1992


300 000 000 T/an de produit chimique synthétisé (OCDE)


environ 100 000 produits chimiques différents utilisés chaque jour

Production annuelle de produit chimique (Watts, 1998)

Les conséquences

Schwarzenbach et al., 2003

Présence partout,

Accumulation dans les tissus animaux et végétaux,

Effet sur organismes non cibles

Les prises de conscience

Les accidents spectaculaires

Silent spring, USA, 1962 : effet toxique du DDT

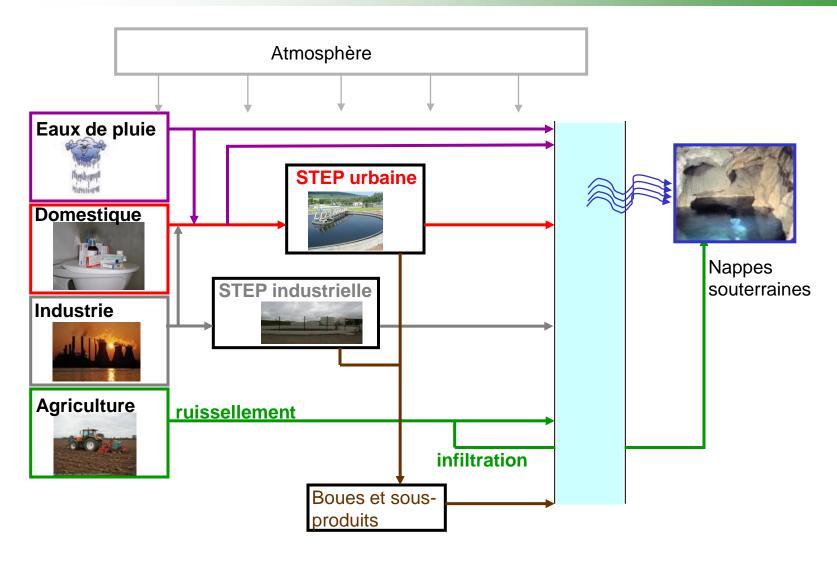
Seveso, Italie, 1976 : pollution des sols (110 ha) par un herbicide et de la dioxine,

Bhopal, Inde, 1984 : fuite de méthylisocyanate (pesticide), 2500 morts,

Bâle, usine Sandoz, Suisse, 1986 : 30 t de pesticides mercuriels déversés dans le Rhin...

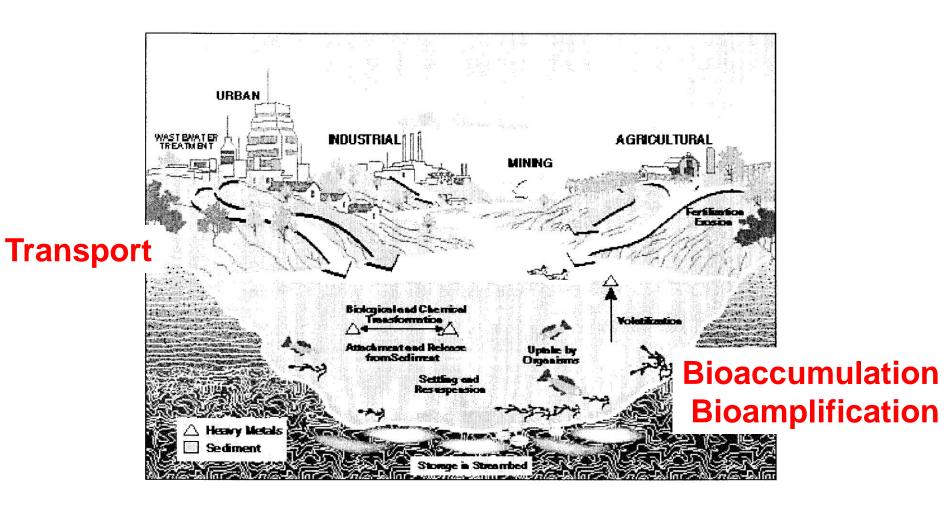
Inde, 1980 : pollution des eaux potables par de l'arsenic présent naturellement

La contamination chronique et diffuse


L'émergence de nouveaux composés

Résidus de médicaments, nanoparticules......

Les sources de contamination

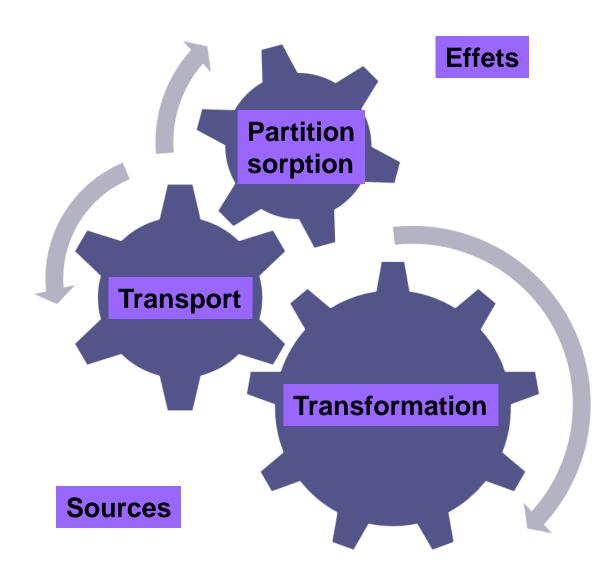

Emission

Transport/traitement

Milieu récepteur

Sources et devenir

Transformation


Volatilisation

Stockage/relargage

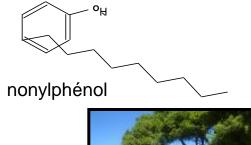
Devenir et effet

Connaissances sur les processus qui gouvernent leur devenir dans l'environnement et sur les effets

Les effets potentiels

Perturbation endocrinienne

1000 à 10000 fois moins oestrogénique mais souvent 1000 à 10000 fois plus concentré



Contexte: directives, lois....

Le grand principe de la DCE (2000/60/CE)

Objectif : préserver le milieu naturel en maîtrisant les effets causés par les activités urbaines et industrielle

Elle définit:

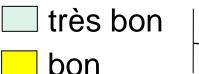
- -des substances chimiques prioritaires à surveiller + substances à réduire dans les rejets
- -des normes de qualité environnementale = NQE fixant un seuil à ne pas dépasser dans les milieux naturels, d'ici 2015

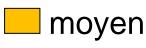
Tous les milieux sont concernés

Objectif de résultats

Contexte: directives, lois....

Le grand principe de la DCE (2000/60/CE)


Obtention d'un bon état des masses d'eau d'ici 2015


Etat écologique

Mesure d'indice biologique de diversité florisique et faunistique

Critères explicatifs d'une mauvaise biologie hydromorphologie

physico-chimie

médiocre

mauvais

Etat chimique

Inventaire de substances dans les masses d'eau comparaison à des NQE = normes de qualité environnementales

C<NQE bon

← médiocre

Les listes.....

18 Substances de la liste l 76/464/CEE

Aldrine

Tétrachlorure de carbone DDT (y c. DDD et DDE) Dieldrine

Endrine

Isodrine

Tétrachloroéthylène Trichloroéthylène Cadmium et composés

<u>Hexachlorobenzène</u>

<u>Hexachlorobutadiène</u> Hexachlorocyclohexane

(y c. Lindane)

Mercure et composés

Pentachlorophénol Trichlorobenzène

Trichlorométhane

1.2 Dichloroéthane*

Alachlore

Diphényléthers bromés

C10-13-chloroalcanes

Chlorfenvinphos

Chlorpyrifos

Di(2-éthylhexyl)phtalate (DEHP)

Diuron

Fluoranthène

Isoproturon

Nonylphénols

Octylphénols

<u>Pentachlorobenzène</u>

Composés du tributylétain

41 substances pour l'évaluation de l'état chimique, DCE (EC, 2008)

Anthracène,

Naphthalène

Fluoranthène

5 autres HAP

Atrazine

Endosulfan

Simazine

Trifluraline

Plomb et ses composés

Nickel et ses composés

Dichlorométhane

Benzène

Polluants \ émergents

hormones antibiotiques cosmétique autres... Chlorobenzène Chloroprène

3-chloroprène

1.2-Dichlorobenzène

1.2-Dichlorobenzène

1.4-Dichlorobenzène

1.1-Ddichloroéthane

139 substances de la liste II 76/464/CEE

Directive substances dangereuses

Ethylbenzène

Toluène Trichloroéthanes

Trichloréthane

Chlorure de Vinyle

pesticides

. métaux

INC

33 Substances

Prioritaires DCE

dont **11**

Dangereuses

Prioritaires

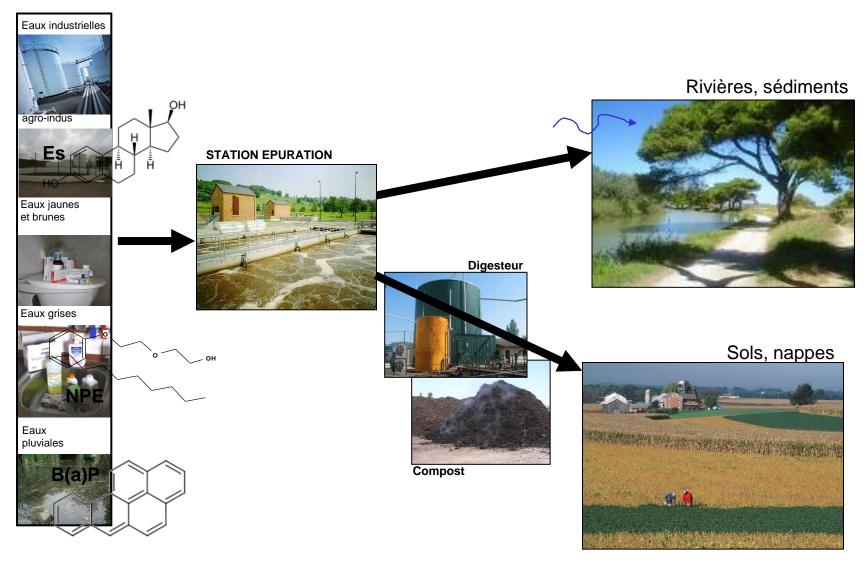
Les listes ... en constante évolution

Perfluorooctane sulfonic acid and its salts (PFOS) and perfluorooctane sulfonyl
r chiadrooctane sandrile acid and its sans (i i co) and periladrooctane sandrily
fluoride
Methyl 5-(2,4-dichlorophenoxy)-2-nitrobenzoate (BIFENOX)
Terbutryn
Cybutryne (Irgarol®)
Cypermetrin
Dichlorvos
Heptachlor
Heptachlor epoxide (métabolite)
Polychlorinated biphenyls (PCBs)
Dioxin (2,3,7,8 - Tetrachlorodibenzo-p dioxin,TCDD)
1,2,5,6,9,10-Hexabromocyclododecane (HBCDD)
1,3,5,7,9,11-Hexabromocyclododecane (HBCDD)
Quinoxyfen
Dicofol
Cyanides
Aclonifen
Diclofenac1
17alpha-ethinylestradiol
Zinc and its compounds
Diphenyl ether, octabromo derivative (octoBDE or BDE-197)
Ibuprofen1
17 alpha/beta estradiol1

nouvelles substances prioritaires

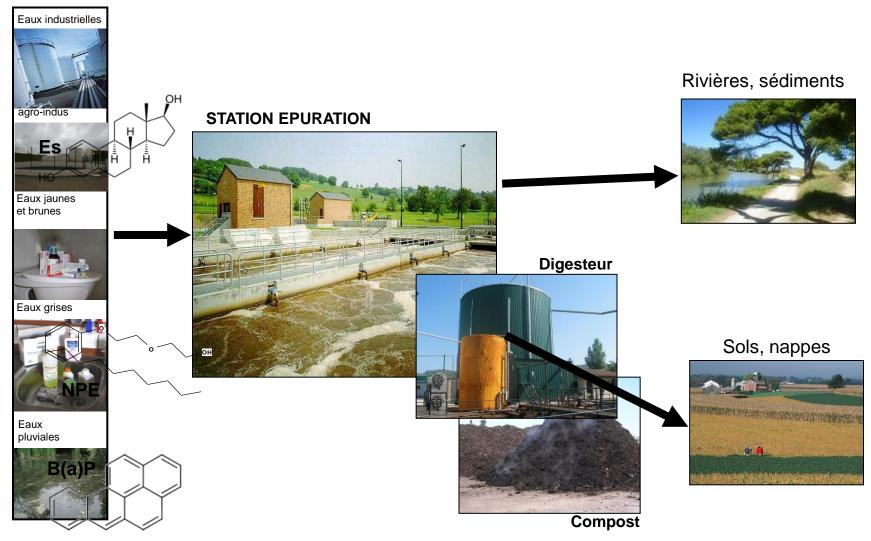
encore en discussion

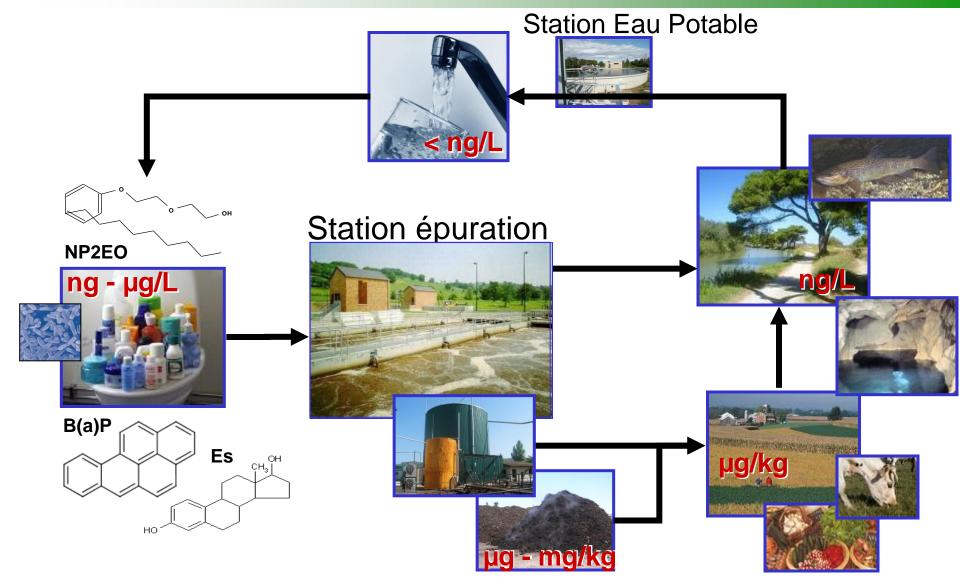
En discussion au groupe de travail européen WGE


Page 3 sur 11

(I) N°UE	N°UE DCE (2)	Nom de la substance	N° CAS (Chemical Abstracts Service)	NQEp (μg/l) Eaux de surface intérieures (3)	NQEp (µg/l) Eaux de transition (3)	NQEp (μg/l) Eaux marines intérieures et territoriales(3)	Sédiments
. 10. 10.77 . 10	1.	Alachlore	15972-60-8	0,3	0,3	0,3	s.o.
3 3	2.	Anthracène	120-12-7	0,1	0,1	0,1	suivi
131	3.	Atrazine	1912-24-9	0,6	0,6	0,6	s.o.
7	4.	Benzène	71-43-2	10	8	8	s.o.
	. 5	Pentabromodiphényléther ^e	32534-81-9	0,0005	0,0002	0,0002	suivi
12	6.	Cadmium et ses composés	7440-43-9	5	5 D ⁽⁴⁾	2,5 D ⁽⁴⁾	suivi
	7.	C10-13-chloroalcanes	85535-84-8	0,4	0,4	0,4	suivi
	8.	Chlorfenvinphos	470-90-6	0,1	0,1	0,1	suivi
	9.	Chlorpyrifos	2921-88-2	0,03	0,03	0,03	suivi
59	10.	1,2-Dichloroéthane	107-06-2	10	10	10	s.o.
62	11.	Dichlorométhane	75-09-2	20	20	20	5.0.
	12.	Di(2-éthylhexyl)phtalate (DEHP)	117-81-7	1,3	1,3	1,3	suivi
	13.	Diuron	330-54-1	0,2	0,2	0,2	s.o.
76	14.	Endosulfan	115-29-7	0,005	0,0005	0,0005	suivi
	15.	Fluoranthène	206-44-0	0,1	0,1	0,1	suivi
83	16.	Hexachlorobenzène	118-74-1	0,03	0,03	0,03	suivi
84	17.	Hexachlorobutadiène	87-68-3	0,1	0,1	0,1	suivi
85	18.	Hexachlorocyclohexane	608-73-1	0,1	0,02	0,02	suivi
	19.	Isoproturon	34123-59-6	0,3	0,3	0,3	s.o.
Métal	20.	Plomb et ses composés	7439-92-1	7,2	7,2	7,2	suivi
92	21.	Mercure et ses composés	7439-97-6	1	0,5 D ⁽⁴⁾	0,3 D ⁽⁴⁾	suivi
96	22.	Naphthalène	91-20-3	2,4	1,2	1,2	suivi
Métal	23.	Nickel et ses composés	7440-02-0	20	20	20	suivi
	24.	Nonylphénols	25154-52-3	0,3	0,3	0,3	suivi
	25.	Octylphénols	1806-26-4	0,1	0,01	0,01	suivi
	26.	Pentachlorobenzène	608-93-5	0,007	0,0007	0,0007	suivi
102	27.	Pentachlorophénol	87-86-5	2	2	. 2	sulvi

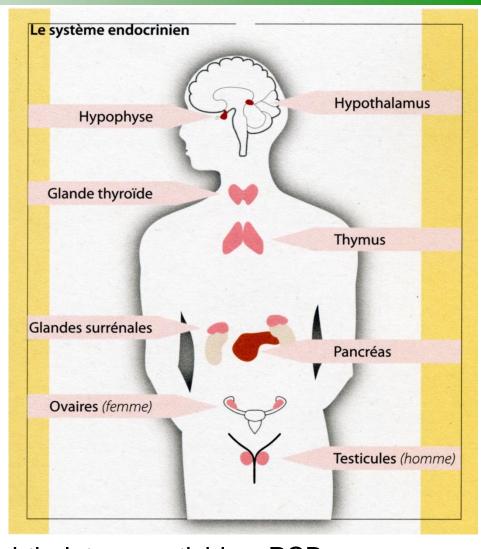
Le traitement des eaux et des boues


un point de convergence


Le traitement des eaux et des boues

un point d'action majeur

Présence des micropolluants dans les eaux


Les perturbateurs endocriniens

Substance naturelle ou de synthèse capable de rentrer en compétition avec les hormones endogènes pour la fixation aux récepteurs hormonaux ou d'influer sur la synthèse ou l'élimination des hormones endogènes et de leur récepteurs induisant une modification de la réponse naturelle de l'organisme.

Altération des grandes fonctions physiologiques : reproduction, développement et comportement

effets:

- fertilité, fécondité, qualité des semences
- sex-ratio
- développement et malformations
- altérations génétiques (cancers)

xéno-œstrogènes: NP, HAP, BPA, phthalates, pesticides, PCB

œstrogènes : hormones naturelles (E1, E2 et E3)

hormones synthétiques (EE2 et MeEE2)

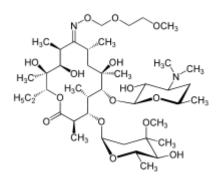
Les perturbateurs endocriniens

List of compounds
recognized as EDCs by
UKEA (United Kingdom
Environment agency),
USEPA (United States
Environnemental
Agency), OSPAR (Oslo
and Paris Commission),
JEA (Japan Environment
Agency), and WWF
(World Wildlife Fund)

Composé UKFA USEPA OSPAR JEA WWF
Ethinyl oestradiol
17β-oestradiol
Oestrone X X Mestranol X X Diethylstilbestrol X X X X Alkvlphénols X X X X X Nonylphénol ethoxylate X X X X X X Octylphenol hoxylate X<
Mestranol X
Diethylstilbestrol
Nonylphénol
Nonylphénol
Nonylphénol ethoxylate
Octylphenol X <th< td=""></th<>
Octylphenolethoxylate X Composés polyaromatiques Polychlorobiphenyls X X X X X X X X X X X X X X X X X X X
Composés.polyaromatiques X
Polychlorobiphenyls X
Polychlorobiphenyls X
Produits ignifugeant bromés X X Hydrocarbures aromatiques polycycliques X X Composés organiques oxygénés X
Composés organiques oxygénés Phtalate X
Composés organiques oxygénés Phtalate X
Phtalate X X X X Bisphenol A X X X X X Pesticides Atrazine X X X X X Simazine X X X X X X Dichlorvos X
Pesticides Atrazine X X X X X Simazine X
Atrazine X X X X X X X X X X X X Dichlorvos X
Simazine X X X X Dichlorvos X X X X Endosulfane X X X X Trifluraline X X X S-méthyl-demeton X X X
Dichlorvos X Endosulfane X X X X Trifluraline X X X S-méthyl-demeton X X X
Endosulfane X X X X Trifluraline X X X S-méthyl-demeton X X
Trifluraline X X X S-méthyl-demeton X
Trifluraline X X X S-méthyl-demeton X
· ·
Dimethoate X X
Linuron X
Permethrine X X X
Lindane X X X X
Chlordane X X X
Dieldrine X X X
Hexachlorobenzène X X X
Pentachlorophénol X X X X
Autres
Dioxines et furanes X X X X
Tributyltine X X X X

Les résidus de médicaments

- Carbamazépine : anti-épileptique,
- Fénofibrates : hypolipémiants (prévention cardiaque).
 Acide fénofibrique = métabolite.
- Bromazépam, oxazépam : anxiolytiques (tranquillisants).
- Sulfaméthoxazole : antibiotique (sulfamide), associé au triméthoprime (infections ORL, urinaires, pulmonaires...). Posologie: 0.8 à 2 g / jour.
- Paracétamol : antalgique (anti-douleur) le plus utilisé en France. Posologie: 0.5 à 4 g / j.
- Métoloprol : anti-hypertenseur (bêtabloquant): troubles cardiaques, migraines.
- Diclofénac et kétoprofène : anti-inflammatoires et antalgiques. Posologie: 100-200 mg / j.
- Furosémide : diurétique.

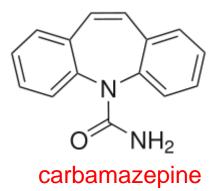

Les résidus de médicaments

Antinflammatories

naproxen

Musks

Antibiotics



roxithromicine

Estrogens

17ß-estradiol E2

Tranquilizers

Présence des micropolluants dans les eaux

Une réalité...

Les eaux pluviales

Présence de métaux, HAP, pesticides, surfactants, PCB

Les eaux de vaisselle

Les eaux des toilettes

Présence de résidus de médicaments

Présence de surfactants, plastifiants, solvants parfums, cosmétiques, désinfectants,

Présence des micropolluants dans les eaux

Une réalité...quantifiée

Flux total: 0.394 g/j EH 82% métaux

15% pharmaceutiques

2% phthalate (DEHP)

0.3% alkylphénols

Flux en g/j EH:

DCO 145

MES 75

NTK 15

Pt 2.1

Projet AMPERES : 20 step, 250 échantillons, 127 substances

Stricker et Héduit, CEMAGREF, 2011

Présence dans les eaux

Eaux distribuées

nonylphénol <0.1 µg/L

<u>Eaux</u>

souterraines

nonylphénol

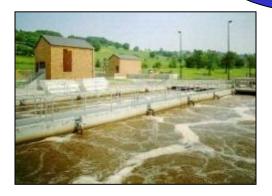
₂0.1-33 μg/L

Oestrogènes 0.1-10 ng/L

nonylphénol

<100 µg/L

NQE 0.3 µg/L



Oestrogènes

30-60 µg/j

Oestrogènes 100-400 ng/L nonylphénol

 $0.1-20 \mu g/L$

Eaux Traitées

Oestrogènes 10-100 ng/L nonylphénol

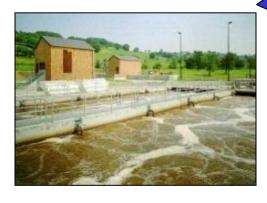
 $0.1-1 \mu g/L$

Un gradient de concentration dans les eaux

Présence dans les eaux

Eaux distribuées
carbamazépine
rien à trace
23% des eaux traitées

<u>Eaux</u>


souterraines carbamazépine 3-80 ng/L

Eaux rivière carbamazépine 30-250 ng/L

Eaux usées carbamazépine 700-2000 ng/L

Eaux Traitées carbamazépine 400-2000 ng/L

Un gradient de concentration dans les eaux

Présence dans les eaux

POSEIDON, detailed report related to the overall duration (1.1.2001-30.6.2004)

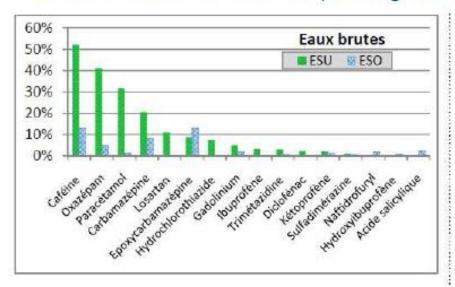
18/01/0

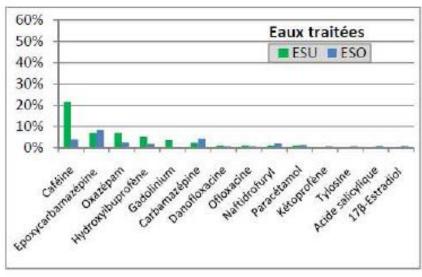
Table 1.2: Median (maximum) concentrations in Germany (GER), Austria (AUT), Poland (PL), Spain (ES), France (FR), Switzerland (CH). Concentrations in WWTP influents and effluents and in surface waters are given in ng L⁻¹.

PPCP	Location	GER	AUT	PL	ES	FR	СН	FIN
Diclofenac	influent	3500 (28000)	3100 (6000)	1750 (2000)	n.d.	n.a.	1400 (1900)	350 (480)
	effluent	810 (2100)	1500 (2000)	n.a.	n.d.	295 (300)	950 (1140)	250 (350)
	river	150 (1200)	20 (64)	n.a.	n.a.	18 (41)	20 150	15 (40)
Ibuprofen	influent	5000 (14000)	1500 (7200)	2250 (2800)	2750 (5700)	n.a.	1980 (3480)	13 000 (19 600)
	effluent	370 (3400)	22 (2400)	n.a.	970 (2100)	92 (110)	< 50 (228)	1300 (3900)
	river	70 (530)	n.d.	n.a.	n.a.	23 (120)	n.d150	10 (65)
Bezafibrate	influent	4900 (7500)	2565 (8500)	780 (1000)	n.d.	n.a.	n.a.	420 (970)
	effluent	2200 (4600)	103 (611)	n.a.	n.d.	96 (190)	n.a.	205 (840)
	river	350 (3100)	20 (160)	n.a.	n.a.	102 (430)	n.a.	5 (25)
Diazepam	influent	< LOQ	n.d.	n.a.	n.d.	n.a.	n.d.	n.d.
	effluent	< LOQ (40)	n.d.	n.a.	n.d.	n.d.	n.d.	n.d.
	river	n.d.	n.d.	n.a.	n.a.	n.d.	n.d.	n.d.
Carba-	influent	2200 (3000)	912 (2640)	1150 (1600)	n.a.	n.a.	690 (1900)	750 (2000)
mazepine	effluent	2100 (6300)	960 (1970)	n.a.	n.a.	1050 (1400)	480 (1600)	400 (600)
	river	250 (1100)	75 (294)	n.a.	n.a.	78 (800)	30 150	70 (370)
SMX	influent	1370 (1700)	n.d. (470)	1550 (2000)	600	n.a.	425 (570) 1670 ^{a)} (1900 ^{a)})	n.a.
	effluent	400 (2000)	31 (234)	n.a.	250	n.d.	290 (860) 400 ^{a)} (880 ^{a)})	n.a.
	river	30 (480)	n.d.	n.a.	n.a.	25 (133)	n.a.	n.a.
Roxithro-	influent	830 (1000)	43 (350)	n.d.	n.d.	n.a.	20 (35)	n.a.
mycin	effluent	100 (1000)	66 (290)	n.a.	n.d.	n.d.	15 (30)	n.a.
	river	<loq (560)<="" td=""><td>n.d.</td><td>n.a.</td><td>n.a.</td><td>9 (37)</td><td>n.a.</td><td>n.a.</td></loq>	n.d.	n.a.	n.a.	9 (37)	n.a.	n.a.
Iopromide	influent	13000 (22000)	n.d. (3840)	1330 (2700)	6600	n.a.	810 (7700)	n.a.
	effluent	750 (11000)	n.d. (5060)	n.d.	9300	n.d.	790 (2000)	n.a.
	river	100 (910)	91 (211)	n.a.	n.a.	7 (17)	n.a.	n.a.
Tonalide	influent	400 (450)	970 (1400)	n.d.	1530 (1690)	n.a.	545 (940)	200 (230)
(AHTN)	effluent	90 (180)	140 (230)	n.a.	160 (200)	n.a.	410 (500)	40 (50)
Galaxolide	influent	1500 (1800)	2800 (5800)	610 (1200)	3180 (3400)	n.a.	1660 (2200)	750 (980)
(HHCB)	effluent	450 (610)	470 (920)	n.a.	500 (600)	n.a.	1150 (1720)	120 (160)

n.d. non detectable (< detection limit); n.a. non available

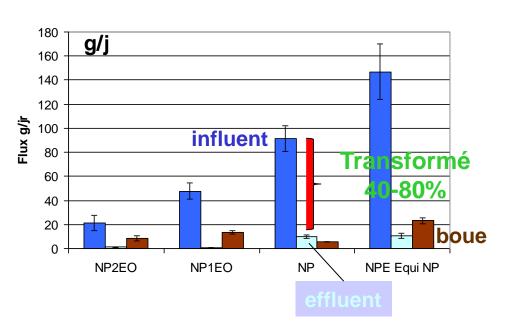
Influent concentrations in Germany are mean concentrations


a) SMX including the human metabolite N^4 -acetyl-sulfamethoxazole

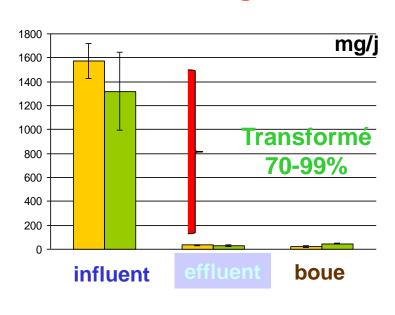


Des médicaments dans l'eau potable

→ 280 échantillons étudiés (1/3 origine superficielle, 2/3 origine souterraine)


- 75% des échantillons : pas de substances quantifiables
- 25% des échantillons : 1 à 4 molécules
- concentration cumulée < 25 ng/L pour 90% des échantillons

ANSES - Laboratoire d'hydrologie de Nancy campagne nationale présence de résidus de médicaments dans les eaux destinées à la consommation humaine (01/2011)



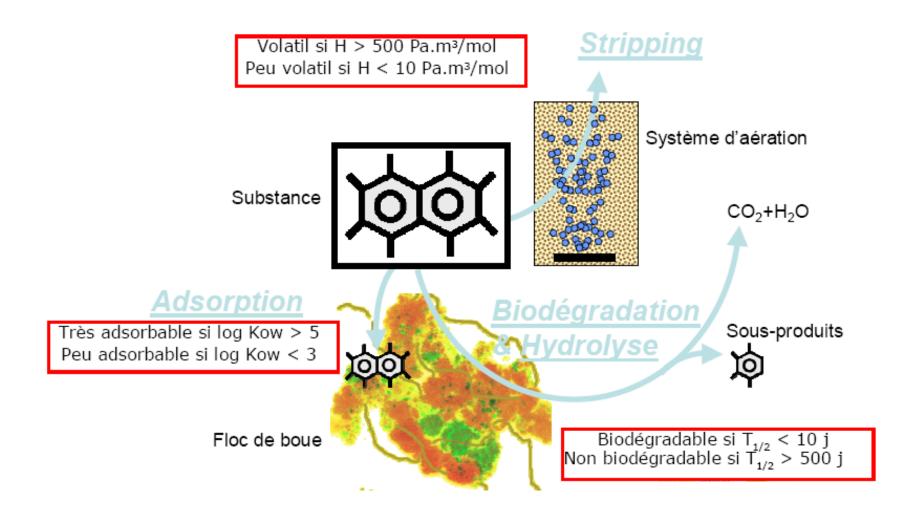
Un point de contrôle et d'action

nonylphénol

oestrogène

carbamazépine

<40% transformé


>60% effluent

<5% boue

Trois mécanismes prépondérants : volatilisation, sorption et transformation (dégradation)

La biodégradation des oestrogènes : les isolats

Dégradation souvent observée dans les STEP sous aérobiose, favorisée par des syncopée aéro/anox, E2 transformé en E1, minéralisation de E1, EE2 le plus récalcitrant

Ref	Microorganisme	Isolé de	Produit final	Met/ com	Anaer/an ox /aer	vitesse
1	Novosphingobium tardaugens	Activated sludge	?	Met	aer	
2	Nitrosomonas europaea	Nitrifying activated sludge			aer	Zero order 0.002 mg/l/l
3	Fusarium proliferatum	Cowshed			aer	
4	Chlorella vulgaris				aer	
5	Rhodococcus zopfii R. equi	Activared Sludge			aer	
6	Denitratisoma oestradiolicum			Met	anox	

^{1 -} Fujii et al., 2002

^{2 -} Shi et al., 2004

^{3 -} Suzuki et al., 2003; Shi et al., 2002

^{4 -} Lai et al., 2002

^{5 -} Yoshimoto et al., 2004

^{6 -} Fahrbach et al., 2006

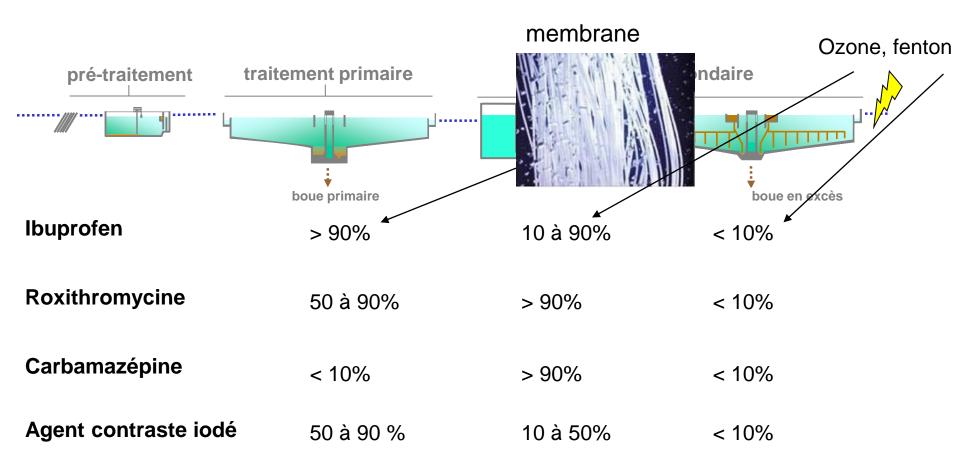
Procédé	Composé	Efficacité (%)	Inoculum	Références
Activated sludge batch, radiolabelled	E2, EE2	E2→ E1 CO2 95% E2 20% EE2	Urban AS Industrial AS	Ternes et al., 1999 Layton et al., 2000
Continuous nitrifying AS	EE2	1μg/gMS/h Limiting factor SRT	Nitrifying AS	Vader et al., 2000 Clara et al., 2005
Anaerobic	E2, EE2 E1, E3	90% E2 40 to 60% EE2	Anaerobic digester	Carballa et al., 2004 Lema et al., 2004 Lee t al., 2002
Italian WWTP AS	E2, EE2 E1, E3	E3>E2-EE2 > E1 61 to 97%		Baronti et al., 2000 D'Ascenzo et al., 2003
Spanish WWTP AS	E2	65%		Carballa et al., 2004
Brasil, german WWTP AS/BF	E2,E1,EE2	0 to 99%		Ternes et al., 1999
German WWTP AS	E2,E1,EE2	94 to 98%		Andersen et al., 2003
Canadian WWTP various processes	E2,E1	75 to 98% E2 50 to 98%		Servos et al., 2005

Forte influence des TSH et SRT, température, rédox Biodégradation versus adsorption

Clara et al., 2005; Johnson et al., 2005; Servos et al., 2005; Ternes et al., 1999; Anderson et al., 2003; Svenson et al., 2003

En conclusions

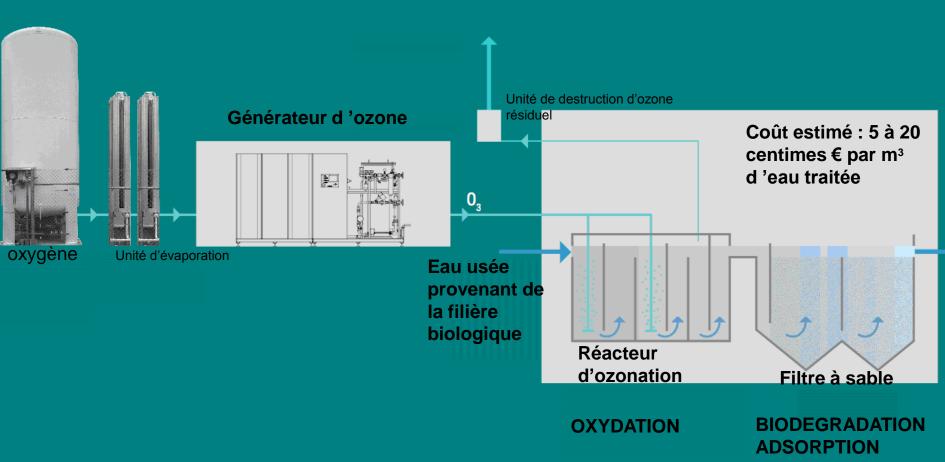
De + en + données, plus fiables, mais parfois difficilement exploitables


Les STEP conventionnelles participent à l'élimination des micropolluants:

- rendements d'élimination > 70% par procédés biologiques pour environ 50% des substances
- rendements procédés biologiques > procédés physico-chimiques
- pas de réelles corrélations entre type de traitement et dissipation des polluants
- manque de connaissances sur les mécanismes de dissipation, surtout biodégradation et sorption
- cibler les stratégies de traitement avancés à appliquer en fonction des substances à forte concentration ou à fort impact dans l'eau traitée

? Efficacité de traitements tertiaires type oxydation, membrane

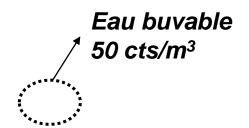
Mise en œuvre de traitements avancés



Résultats issus des projets Européen POSEIDON (2001-2004) et P-THREE (2002-2005)

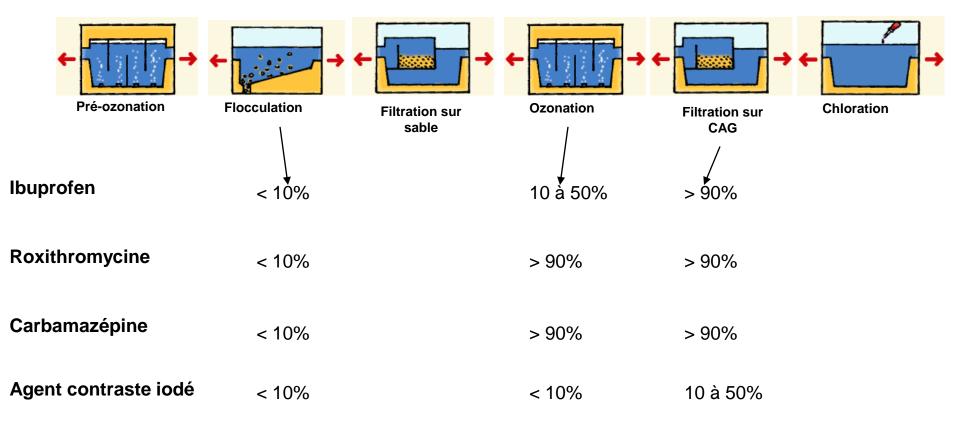
Mise en œuvre de traitements avancés

Essai d'ozonation sur site réel (site de Wüeri à Regensdorf, Suisse)


http://www.eawag.ch/media/20070709/faktenblatt_e.pdf

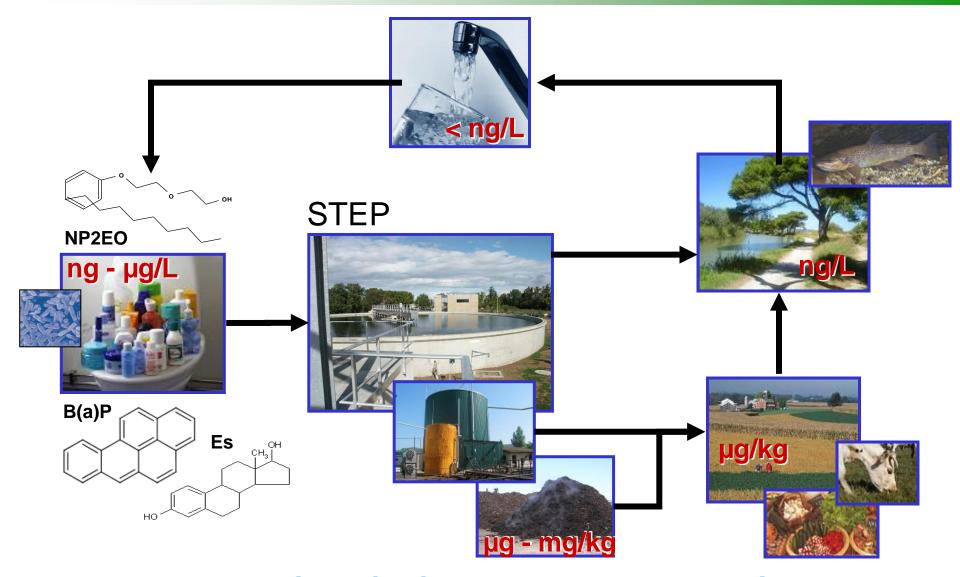
Step > 100 000 EH obligation de traitement

Mise en œuvre de traitements avancés : step de Lausanne


Ço₃ FS ↓ Eau baignade 6 cts/m³

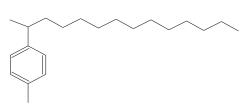
Plus de 80% des miropolluants éliminés

Rôle des procédés de traitement


En potabilisation

Résultats issus du projet Européen POSEIDON (2001-2004): échelle laboratoire, pilote et réelle, utilisation de biotests

http://poseidon.bafg.de/servlet/is/2884/



Parmi les substances éliminées à plus de 30% par des systèmes conventionnels, 65% sont simplement transférées aux boues (Amperes)

La filière BOUE, le parent pauvre! Et pourtant!

Présence indéniable de micropolluants

Linear alkylbenzene sulfonate (LAS)

Phthalates

3rd draft of the SS EU **Directive**

2600

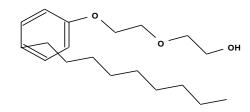
50

100

Concentrations boues européennes

LAS:

100 - 15000 mg/kg DW


NPE:

25 - 500 mg/kg DW

Phthalates: 10 - 600 mg/kg DW

PAH (16): 0.1 - 10 mg/kg DW

et autres...

Polyaromatic hydrocarbon (PAH)

Nonylphenol ethoxylate (NPE)

La filière BOUE, le parent pauvre! Et pourtant!

Présence indéniable de micropolluants, les autres

Anti-inflammatoires

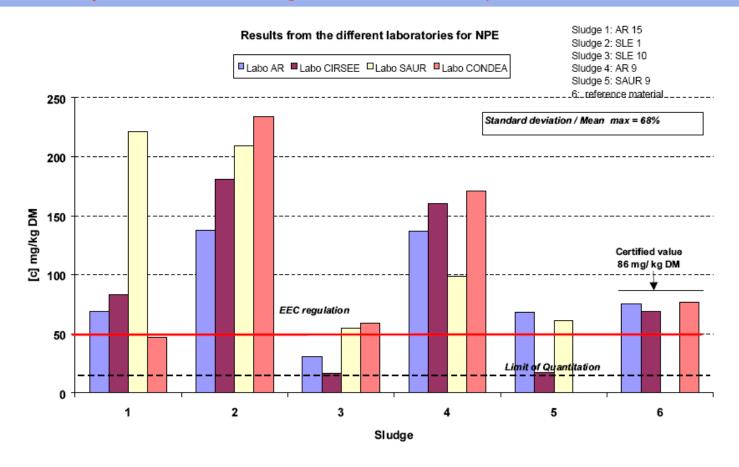
Oestrogènes

Antibiotiques

$$HO \longrightarrow 0 \longrightarrow R$$

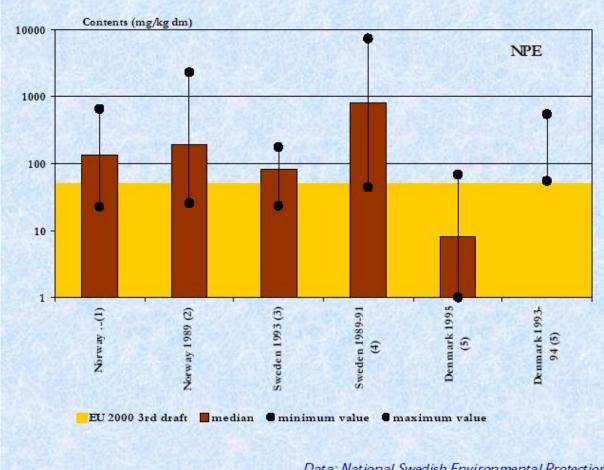
fluoroquinolone sulfamethoxazole ciprofloxacine qq mg/kg²

Parfums


Pesticides

¹Braga et al., 2005; Muller et al., 2008/²Golet et al., 2002; Göbel et al., 2005/³Smith, 2009 / ⁴hKhan et Ongerth, 2002 / ⁵Bester, 2004; Kupper et al., 2004; Heberer, 2002; Ternes et al., 2005


Nonyl Phenols (NPE)


(Results for 5 + 1 sludges and 4 laboratories)

Forte teneur, toxicité moyenne à forte, persistance moyenne

Data: National Swedish Environmental Protection Board 1992 and 1995 Törslöv et. al. 1997, Paulsrud et al. 2000, Vigerust 1989

Traitement des eaux et production de boue

- Plus de 50.000 stations
- ~ 8.1 millions tonnes de boue (MS) (2003)
- Quantités croissantes ...

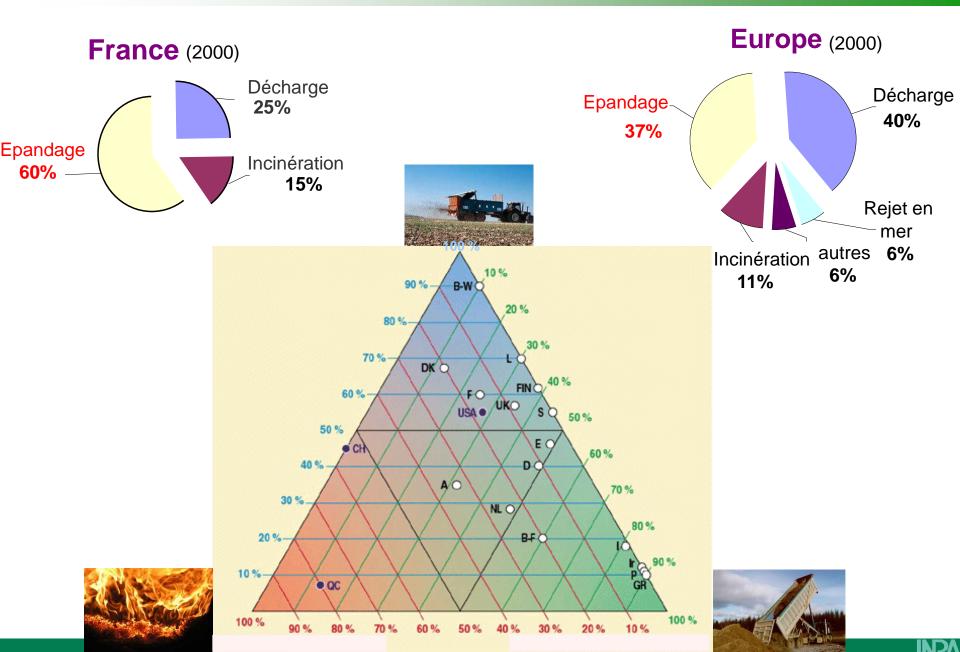
Production de boue selon les pays (million tonnes MS, 2003)

Member State	Sludge Produced (metric tons of		
	dry matter)		
	2001	2003	
Austria	96,110	115,448	
Belgium Flemish	81,351	76,072	
Belgium Waloon	18,514	23,520	
Denmark	158,017	140,021 (2002)	
Finland	159,900	150,000	
France	893,252	910,255 (2002)	
Germany	2,300,686	2,172,196	
Greece	67,735	79,757	
Ireland	33,559	42,147	
Italy	884,964	905,336	
Luxembourg	Na	7.750	
Netherlands	536,000	550,000	
Poπugal	209,014	408,710 (2002)	
Spain	892,238	1,012,157	
Sweden	220,000	220,000	
UK	1,186,615	1,360,366	
TOTAL	7,737,975	8,173,735	

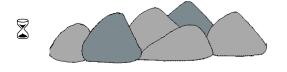
France: 1 180 000 (MEEDDM, 2009), soit 5% de la SAU (INERIS, 2007)

A comparer aux 300 000 000 t MF de lisier et fumier

MEEDDM, 2009. Eléments de contexte et règlementation française relatifs à la valorisation des boues issues du traitement des eaux usées. Direction de l'Eau et de la Biodiversité INERIS, 2007. Application de la méthodologie relative aux substances chimiques à une filière de boues issues d'une



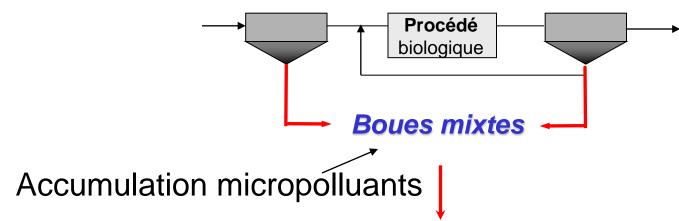
Est-ce un problème ??

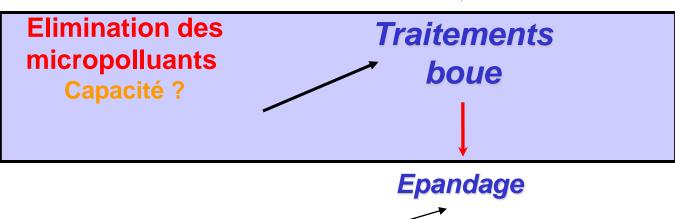

Toxicus horribilis

Xenobiotiques dans les boues

Recyclage MO et nutriments

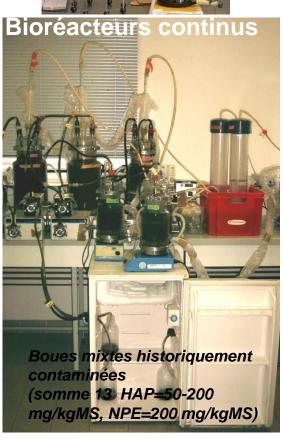
Risque environnemental et humain, question sociétale forte


- •Contamination des écosystèmes et des resources naturelles (sol, eau, air)?
 - > évaluation du risque écotoxicologique
- eaux potables polluées, transfert vers les aliments?
 évaluation du risque sanitaire



ACTION ???

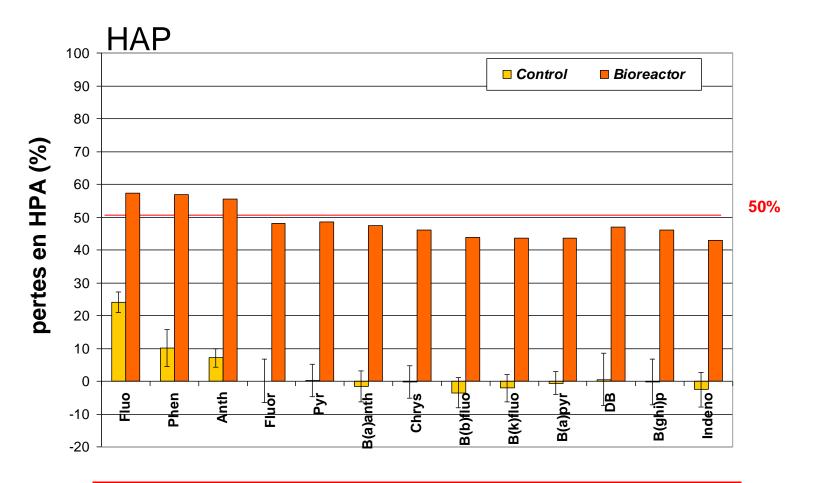
Le rôle des filières de traitement des boues


Digestion anaérobie Digestion aérobie Compostage Chaulage Séchage Déshydratation

Risque environnemental Transferts (eau, plante, animal)

INRA

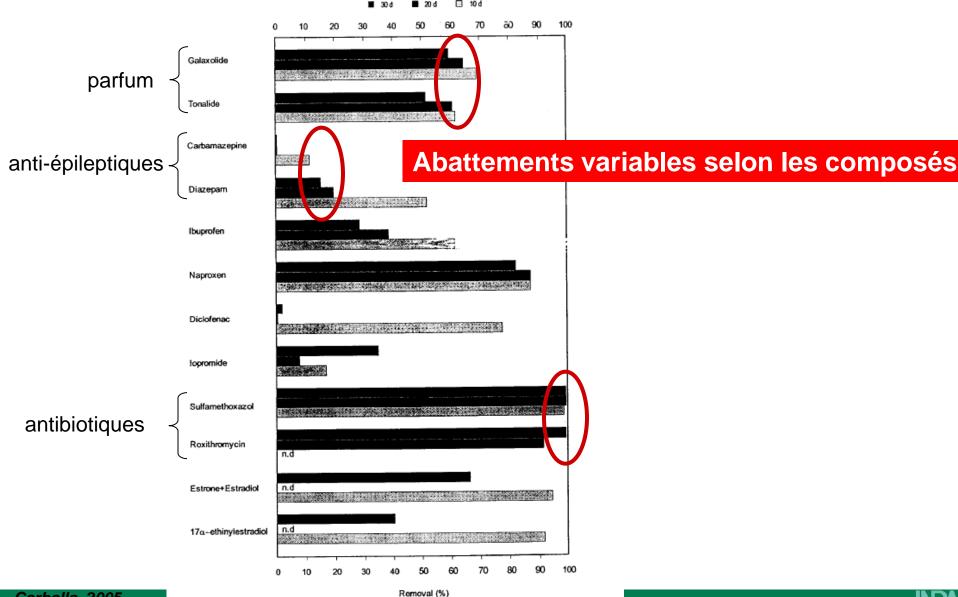
Etude des potentiels de dégradation


paramètres opératoires température anaérobie versus aérobie addition de solvants, d'inhibiteurs flore adaptée versus non adaptée

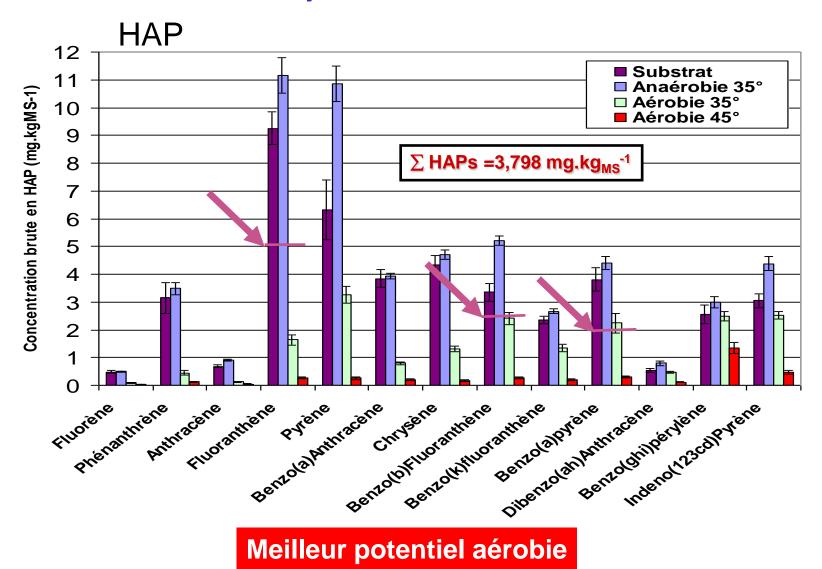
Réacteurs biologiques et témoin

- Optimisation du potentiel couplage avec des procédés physico-chimiques
- Etude des acteurs et de leur métabolisme enrichissements, isolats profil de population

Potentiel naturel d'écosystèmes anaérobies

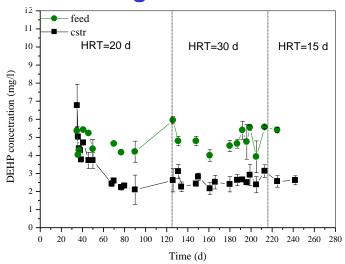


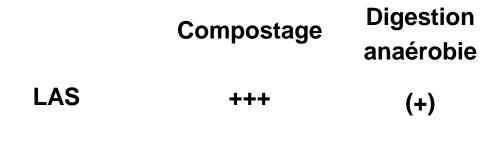
Biodégradation anaérobie significative de 13 HPA

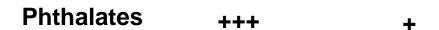

Potentiel naturel d'écosystèmes anaérobies

INR

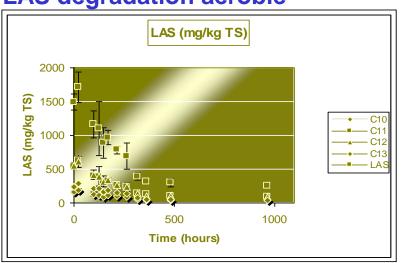
Potentiel naturel d'écosystèmes aérobies

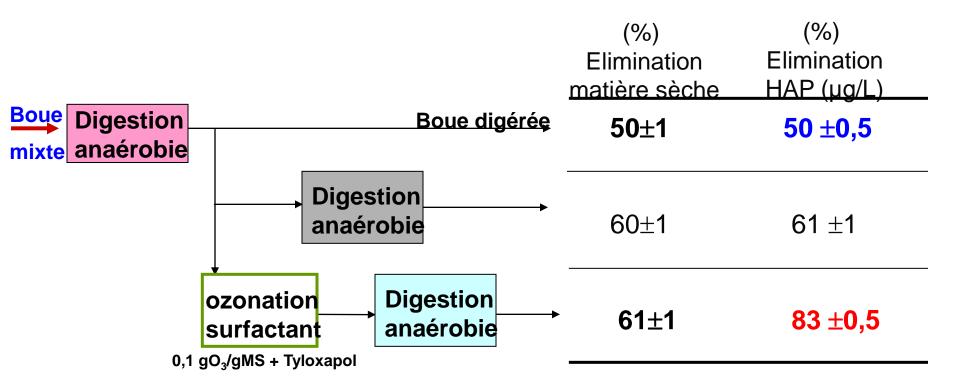



IN?


PAHs

DEHP dégradation anaérobie





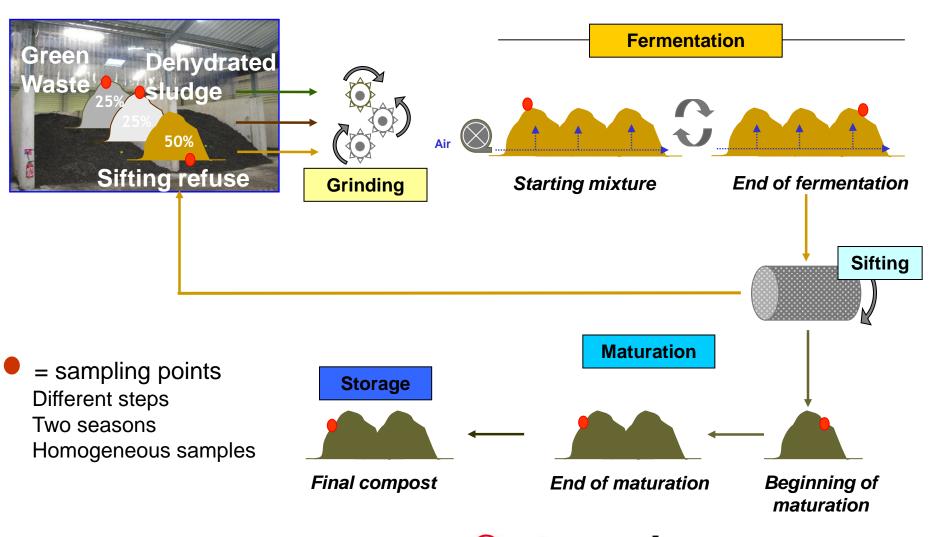
LAS dégradation aérobie

Optimisation du potentiel naturel d'écosystèmes anaérobies

Amélioration par couplage avec l'ozonation

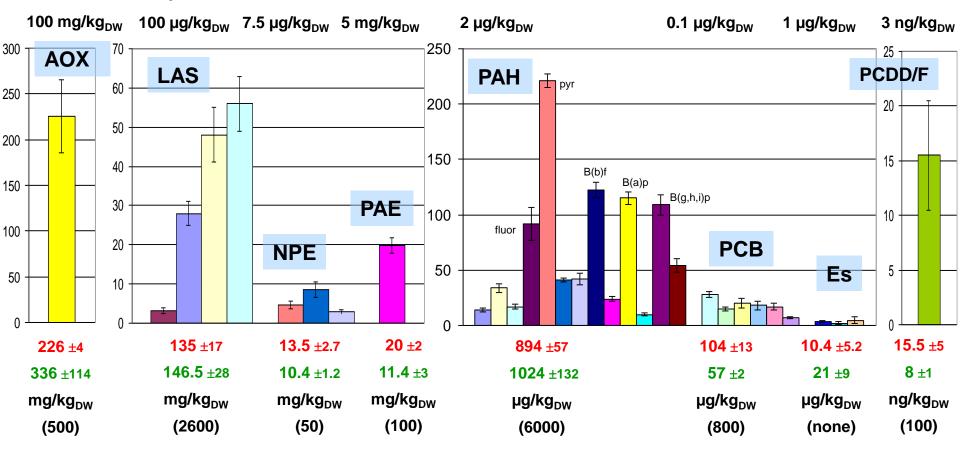
Optimisation du potentiel naturel d'écosystèmes anaérobies

Table 7.24. Summary of PPCPs removal (%) during anaerobic digestion of sewage sludge.


	Mesophilic digester			Thermophilic digester				
	Conventional	Alkaline	Thermal	Ozonation	Conventional	Alkaline	Thermal	Ozonation
YTTTCD	65	69	65	86	74	67	65	69
ннсв				83	79	58	66	32
AHTN	57	56	62	0.3	6	0	0	58
CBZ	0	0	0	17	0	0	30	53
DZP	18 - 52	69	60	45	20 - 59	37		
IBP	41	30	54	21	47	46	41	31
	86	86	89	-	91	88	90	-
NPX	l .		11 - 42	70	26 - 77	0 - 67	2 - 64	68
DCF	0 - 78	4 - 69		10	20	20	31	-
IPM	23	11	32	18	1		98	99
SMX	99	99	99	99	99	99		77
ROX	96	69	86	-	99	-	97	-
	1	35 - 94	41 - 96	82	84	90	52 - 89	89
E1+E2	76				38 - 91	0 - 89	51 - 63	85
EE2	41 - 92	0 - 81	0 - 22	86	30-31	0 - 07	0.00	

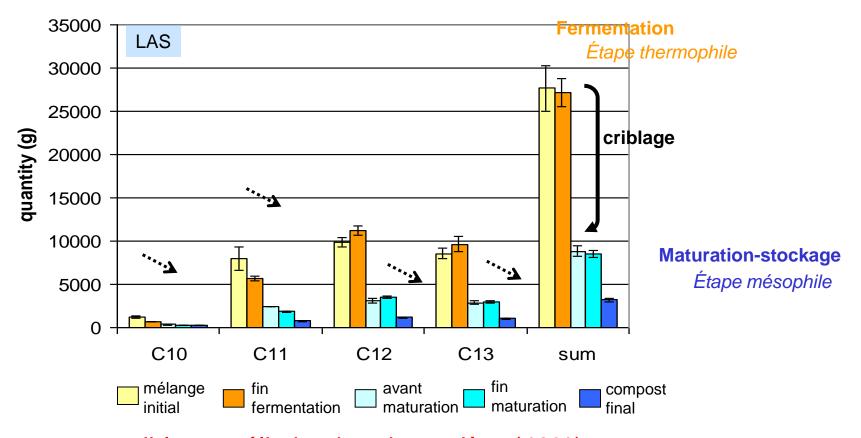
Effet variable selon le pré-traitement

Etude des flux au cours du compostage (échelle industrielle)



Niveau de concentration dans les boues déshydratées

LOQ/matrice compost



- ⇒ Faible teneur comparativement aux valeurs européennes
- ⇒ Différence automne/printemps, fonction du composé
- ⇒ Valeur inférieure aux seuils proposés dans le 3ème draft directive boue

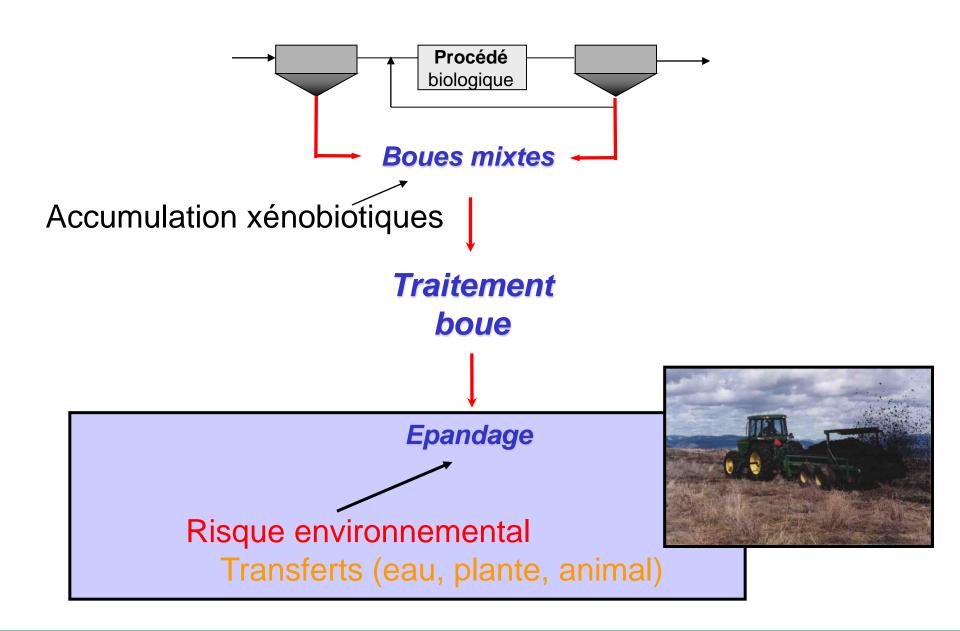
Etude des flux au cours du compostage (échelle industrielle)

- criblage = élimination de matière (40%)
- perte due aux étapes biologiques: fermentation (C10, C11)
 maturation-stockage (tous)

Compost final	Aut 2004	Printps 2005	
AOX	107 ±10	200 ±30	mg/kg
LAS	265 ±14	195 ±17	mg/kg
NPE	13 ±0.4	8 ±0.2	mg/kg
PAE	8.5 ±30	15 ±1	mg/kg
PAH	1.6 ±0.03	1.5 ±0.03	mg/kg
PCB	0.16 ±0.01	0.09 ± 0.005	mg/kg
Es	< LOD	< LOD	mg/kg
PCDD/F	15 ±1	12 ±1	ng eqTE/kg

[⇒] Respecte la norme compost de MIATE (NFU 44-095)

Compostage boue, DV et fumier équin


Réduction en masse initial conc. micropollutant ∆m 0-24 d (%) (ng/g)AHTN 110 68 HHCB 1000 89 Parfum, savon, HHCB-lactone 120 59 détergent (galaxolidone) OTNE 820 88 TCS 84 290 **Bactéricide** 74 Me-TCS 68 DEHP 31000 84 **Plastique** TIBP 130 70 64 TnBP 120 TPP 80 13 Retardateur TCPP 130 50 MTB 11 71 **Vulcanisation**

Dégradation aérobie au cours de la phase thermophile (production d'intermédiaires)

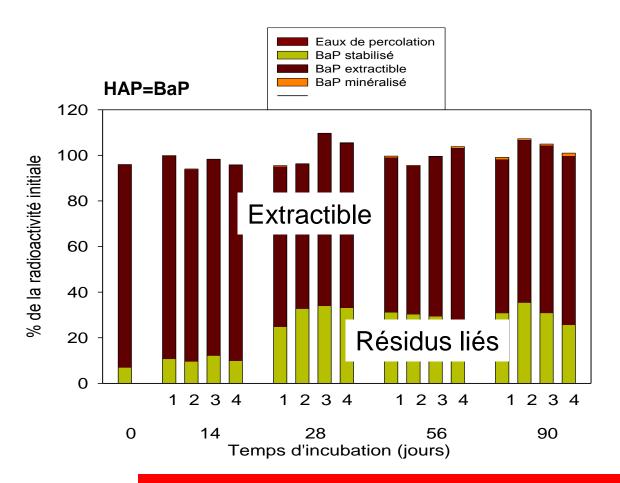
Le devenir dans les sols

Le devenir dans les sols et les effets

Les systèmes expérimentaux

Etude sur une saison
Rendement des cultures
Impacts écotoxicologiques
Dynamique des contaminants dans le système solplante-eau

Validation des hypothèses



Dynamique des contaminants dans le sol sur le long terme

Le devenir dans les sols

Les dynamiques après apport au sol

Boue contenant 2 mg/kg de ¹⁴BaP apportée au sol argileux à 30 T/ha

1 sol et molécule

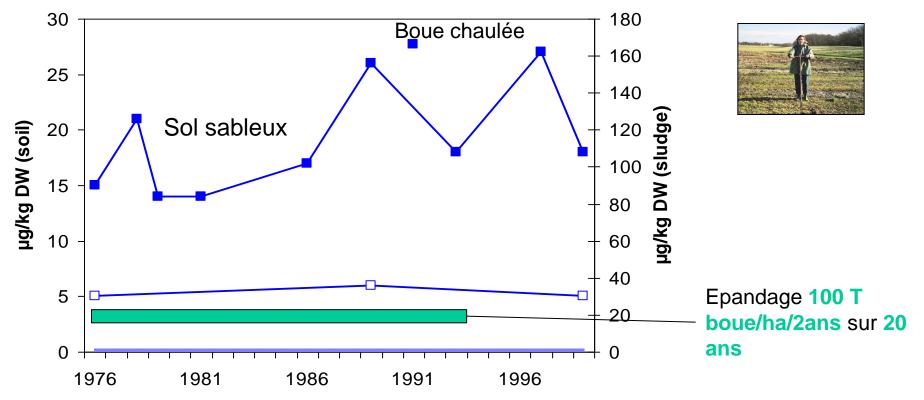
2 sol et boue brute

3 sol et boue digérée

4 sol et boue compostée

Faible minéralisation

Peu de stabilisation (origine ?)


Forte proportion extractible par les solvants : stockage à l'état natif

Le devenir dans les sols

Les dynamiques après apport au sol

- Concentration en HAP 2-5 fois plus élevée dans les sols amendés
- Concentration croissante lors des épandages
- Niveau encore élevé après 7 ans d'arrêt d'épandage
- Comportement différent selon le poids moléculaire

Impact fort des HAP à haut poids moléculaire

Patureau et al., 2007

Le transfert aux plantes

Σ14PAH 2-6 μg/kg_{DW}

 Σ 16HAP 1-1.2 µg/kg_{DW}

NPE 20-30 μg/kg_{DW}

Houot, 2008 essai QualiAgro/Feucherolles

NPE < 100 μg/kg_{DW} PCDD/F 24-39 pg/kg_{DW}

PCDD/F < 1µg/kg_{DW} DBP/DOP 91-1000/<130-2500 μg/kg_{DW}

> DBP 46 µg/kg_{DW}

- ⇒ Quantités semblables quelle que soit la plante
- ⇒ Pas de relation avec les profils sol
- ⇒ Même quantité sur sol témoin et sol amendé
- ⇒ Nécessité d'un bilan complet via dépôts atmosphériques, produits phytosanitaires, engrais

Le transfert aux plantes

Plant de vigne en pot

Conc feuille

Concentration, µg/kg MS

Fluo: 10

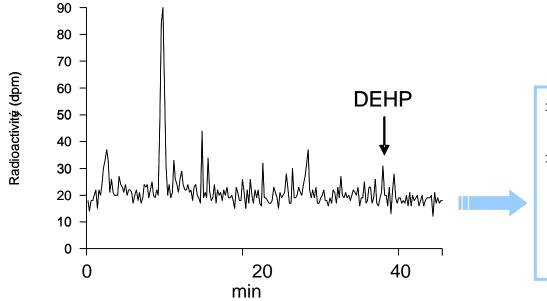
DBS: 22

NP: 53

DEHP: 121

« BCF_{residues} »

DBS: 0.042


NP: 0.27

Fluo: 0.29

DEHP: 0.63

⇒ Faible transfert

⇒ Accumulation des résidus dans les feuilles

⇒Faibles quantités de polluants

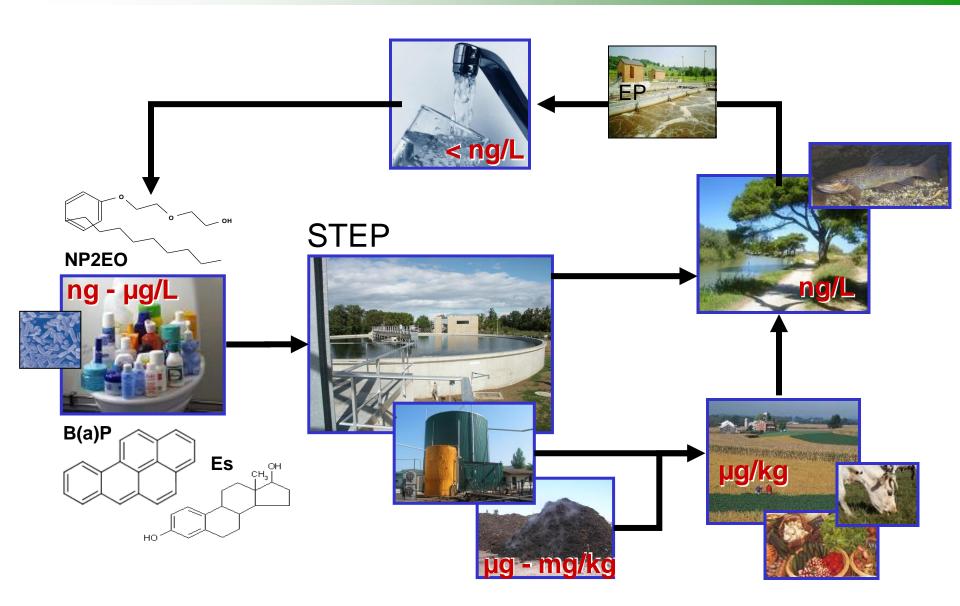
⇒Résidus =

- métabolites produits par la plante
 OU
- produits de dégradation du sol absorbés par la plante

Le devenir dans les sols

En microcosme : faible à peu de minéralisation, peu de transfert vers les eaux (excepté E2) ou les plantes, stabilisation sous forme de résidus liés (NP) ou sous forme native (BaP)

 En pot : facteur de bioconcentration dans la feuille très faible (inf à 1), effet barrière du compost dépendant du composé


En lysimètre avec boues brutes, méthanisées ou compostées : transfert accru des polluants au sol et à la plante pour les boues compostées

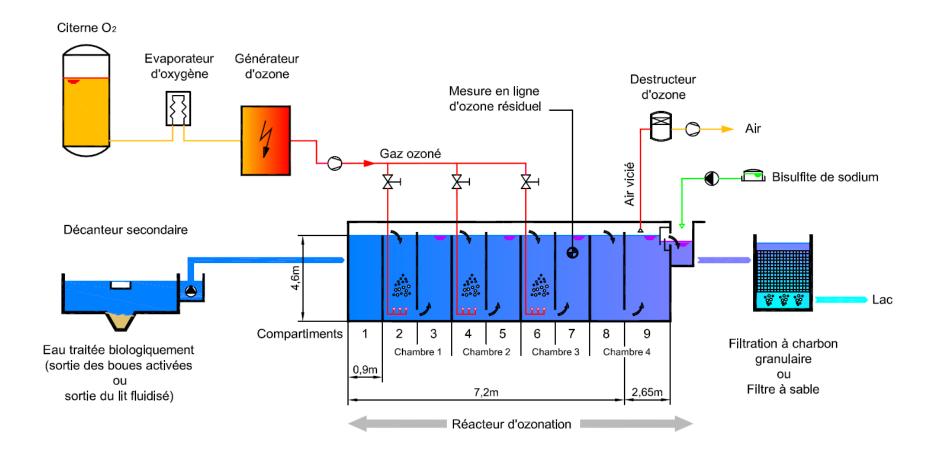
 Au champ : fort impact de la qualité de la boue sur le sol, accumulation des composés les plus persistants, importance de fixer des seuils à l'épandage

Pour conclure...

Pour conclure...

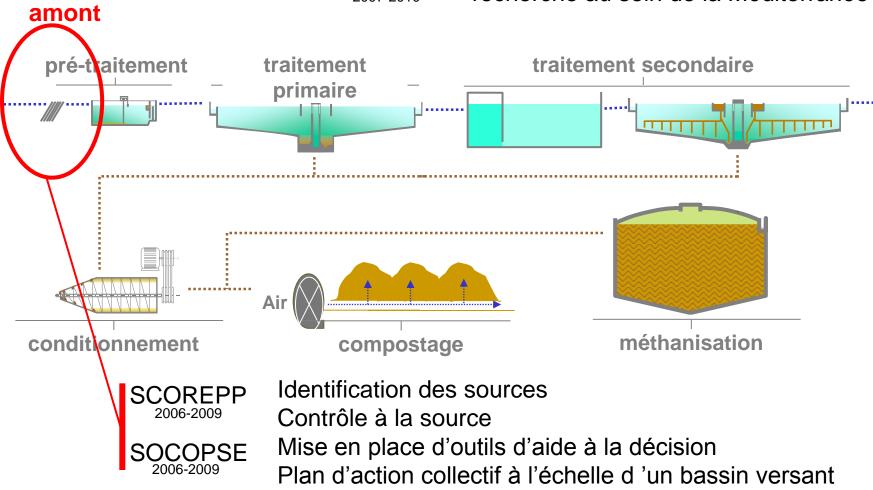
- Présence d'une multitude de micropolluants dans les boues
- Faible teneur
- Suivi ? Comment ? À quel coût ? Indicateurs ?
- Procédé : point de converge point d'action

Pour conclure...

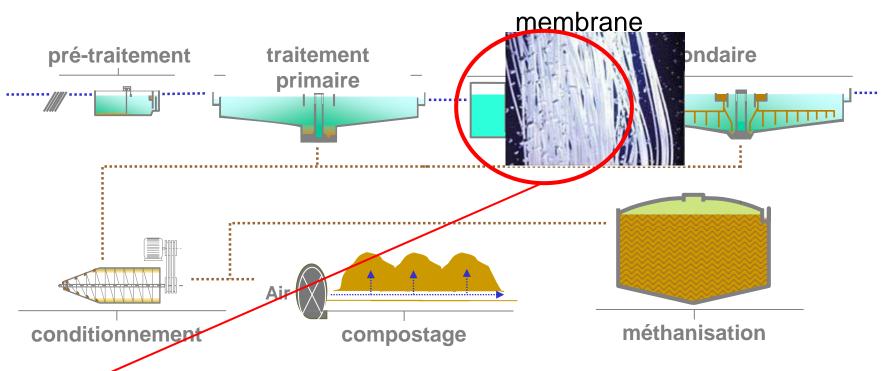

MAIS

- Nécessaire veille sur leur devenir, bioaccumulation, mobilité, impact ecotoxicologique
- Connaissance à approfondir (processus) en vue d'une optimisation et d'une modélisation
- Lien procédé-devenir sol
- Traitement avancé : à quel coût ?
- Effets: multicontamination, faible teneur, long terme
- Les sous-produits : nous ne recherchons que ce que nous connaissons
- Mieux identifier les sources d'entrée et les formes sous lesquels ils transitent dans les STEP.
- Réduction à la source ?

...encore beaucoup à faire!

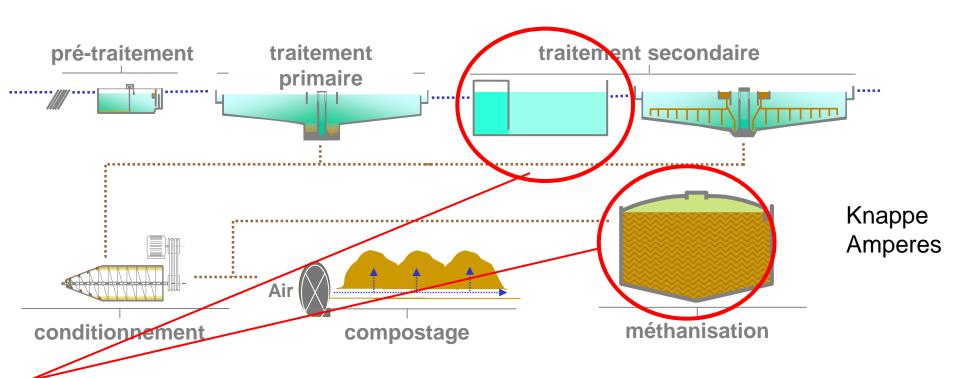


Rôle des procédés de traitement



INNOVA-MED: action de coordination des activités de recherche au sein de la Méditerranée

http://www.socopse.se et http://www.scorepp.eu/


EUROMBRA 2005-2008 http://www.mbr-network.eu EMCO 2004-2007 : membrane, nanofiltration, osmose inverse

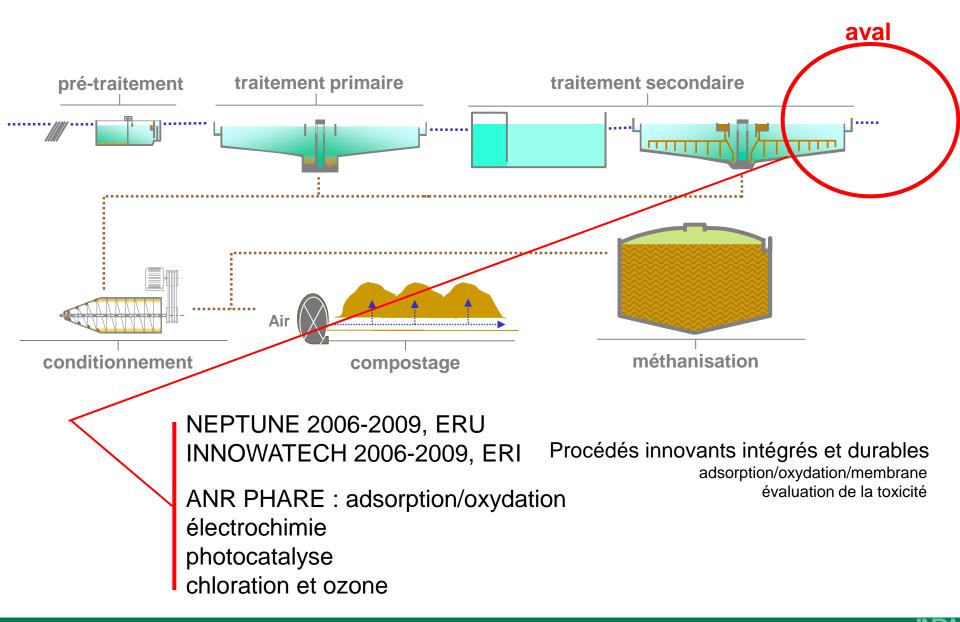
RECOME : pesticide et nanofiltration

ANR REEBIM : boue activée/membrane et osmose inverse/nanofiltration

ANR TOX EAU BAM: membrane et biodégradation

BIOWASTE: 2002-2005

REMOVALS : réduction des boues par digestion anaérobie, maîtrise des polluants


via les ultra-sons et l'oxydation humide

ANR HYBIOX : procédé hybride (biofiltre et floc), ERI

ANR DIGUE : réduction des boues par digestion anaérobie, maîtrise des polluants

ANR DIPERPHA: biodégradation et couplage hydrolyse thermique, lisier

E. Zuccato · R. Bagnati · F. Fioretti · M. Natangelo · D. Calamari · R. Fanelli

Table 3.2. Pharmacological substances in drinking water, sea, lakes and rivers

	Active substance	Levels	Place	References
Drinking water	Bezafibrate	N.d27 ng l ⁻¹	D	Stumpf et al. (1996)
	Bleomycin	5–13 ng l ^{–1}	UK	Aherne et al. (1990)
	Clofibrate (clofibric acid)	Up to 170 ng l ⁻¹	D	Stan et al. (1994); Heberer et al. (1995); Stumpf et al. (1996 Heberer and Stan (1997)
•	Diazepam	10 ng l ⁻¹	UK	Richardson and Bowron (1985)
	Diclofenac	16 ng l ⁻¹	D	Stumpf et al. (1996)
	Ethinyloestradiol	N.d4 ng l ⁻¹	UK	Aherne and Briggs (1989)
Water reservoirs	Ethinyloestradiol ·	1-3 ng l ⁻¹	UK	Aherne and Briggs (1989)
	Norethisterone	$N.d10 \text{ ng I}^{-1}$	UK	Aherne and Briggs (1989)
Sea	Clofibrate (clofibric acid)	0.5-7.8 ng l ⁻¹	North Sea	Buser and Muller (1998)
Lakes	Clofibrate (clofibric acid)	1-9 ng I ⁻¹	СН	Buser and Muller (1998)
	Bezafibrate	Up to 380 ng I^{-1}	D	Stumpf et al. (1996)
Rivers	Clofibrate (clofibric acid)	40 ng l ⁻¹ 30 ng l ⁻¹ Up to 180 ng l ⁻¹	UK I D	Richardson and Bowron (1985) Heberer and Stan (1997) Heberer et al. (1995); Stumpf et al. (1996); Heberer and Stan (1997); Buser and Muller (1998)
	Dextropropoxyphene	1 μg l ⁻¹	UK	Richardson and Bowron (1985)
	Diazepam	10 ng l ⁻¹	UK	Richardson and Bowron (1985)
	Diclofenac	Up to 489 ng 1^{-1}	D	Stumpf et al. (1996)
- ,	Erythromycin	1 μg l ⁻¹	UK	Richardson and Bowron (1985)
	Ethinyloestradiol	2-5 ng i ⁻¹	UK	Aherne and Briggs (1989)
	Fenofibric acid	N.d172 ng l ⁻¹		Stumpf et al. (1996)
	Gemfibrozil	N.d0.19 µg I ⁻¹	D	Stumpf et al. (1996)
	lbuprofen	Up to 139 ng l ⁻¹	D	Stumpf et al. (1996)
	Indomethacin	Up to 121 ng I ⁻¹	D	Stumpf et al. (1996)
- -	Norethisterone	N.d.–17 ng l ⁻¹	UK	Aherne et al. (1985); Aherne and Briggs (1989)
	Sulfamethoxazole	1 μg l ⁻¹	UK	Richardson and Bowron (1985)
	Tetracycline	1 µg i ⁻¹	UK .	Richardson and Bowron (1985)